• Title/Summary/Keyword: shielding materials

Search Result 566, Processing Time 0.027 seconds

Some Measurements of Scattered Radiation from Various Radiation Shielding Materials (방사선(放射線) 차폐물질(遮蔽物質)에서 발생(發生)하는 산란선(散亂線)의 측정(測定))

  • Kim, Chang-Kyun
    • Journal of radiological science and technology
    • /
    • v.4 no.1
    • /
    • pp.15-22
    • /
    • 1981
  • Half value layer(radiation energy) of $90^{\circ}$ scattered radiation from various radiation shielding materials was measured at 1 m distance from the central ray of the primary beam. Scattered radiation was measured from 100 to 200 kVp for 0-2.0mm Cu+1.0mm Al added filter in the primary beam for a deep therapeutic unit, the obtained results were as follows: 1. The ratio of scattered radiation to primary radiation was increased by using lighter filter. 2. The ratio of scattered radiation to primary radiation was decreased by using heavier filter. 3. The ratio of scattered radiation to primary radiation was independent of tube voltage. 4. The scattered radiation of high energy was produced, when the effective atomic number and density of shielding material were high.

  • PDF

Neutron Streaming and PWR Cavity Shielding Design

  • Kim, Kyo-Sool;Lee, Chang-Kun
    • Nuclear Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.127-134
    • /
    • 1980
  • Shielding problems associated with neutron streaming through the reactor vessel cavity of pressurized water reactors are discussed to a certain extent with the actual examples in the currently operating reactors. Various remedial techniques are proposed herein to mitigate the tedious neutron streaming phenomena including piling up in heaps of temporary boron-containing bags and the installation of permanent shield structure making use of a certain refractory materials. In conclusion, optimum cavity shielding design concepts are presented with special emphasis on such major factors as the identification of major neutron streaming path, selection of necessary shielding materials with acceptable constraints, detailed design characteristics and physical configuration as well as the formulation of dependable mathematical tools to predict the final outcome of each design concept proposed in the context.

  • PDF

Preparation and Characteristics of Conducting Polymer-Coated MWCNTs as Electromagnetic Interference Shielding Materials

  • Kim, Yeon-Yi;Yun, Ju-Mi;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • v.12 no.1
    • /
    • pp.48-52
    • /
    • 2011
  • The conducting polymer-coated multi-walled carbon nanotubes (MWCNTs) were prepared by template polymerization of aniline and pyrrole on the surface of MWCNTs in order to develop the novel electromagnetic interference (EMI) shielding materials. The conducting polymer phases formed on the surface of MWCNTs were confirmed by field emission-scanning electron microscopy and field emission-transmission electron microscopy. Both permittivity and permeability were significantly improved for the conducting polymer-coated MWCNTs due to the intrinsic electrical properties of MWCNTs and the conducting properties of coated polymers. The electromagnetic waves were effectively absorbed based on the permittivity nature of conducting polymer and MWCNTs preventing the secondary interference from reflecting the electromagnetic waves. The highly improved EMI shielding efficiency was also obtained for the conducting polymer-coated MWCNTs showing the synergistic effects by combining MWCNTs and the conducting polymers.

Investigation of Shielding Effects of High Conductivity of High Permeability Materials on 60Hz ELF Magnetic Fields (60Hz ELF 자계에 대한 고 도전율 및 고 투자율 재료의 차폐효과 분석)

  • Song Ki-Hyun;Myung Sung-Ho;Min Suk-Won
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.4
    • /
    • pp.166-171
    • /
    • 2005
  • Shielding methods on ELF(Extremely Low Frequency) magnetic fields may include the use of induced currents, modification of magnetic field flux patterns using high permeability and/or high conductivity materials, and others. The magnetic shielding properties of enclosures can be utilized to reduce the magnetic field of current carrying conductors. In this paper, to get a more practical understanding of shielding phenomena, we have investigated the magnetic field reduction by means of 3 dimensional numerical analysis and experiments. We found copper could reduce flux density more then permalloy in both cases of box shield and cylindrical shield. Iron under l0$\mu$T of 1 phase could reduce flux density about $20\%$ more than silicon steel, but both of them under 50$\mu$T has a similar reduction rate of $10\%$. The 3 phase horizontal model gave the highest reduction rate and the 1mm thickness iron under 10$\mu$T of 3 phase lines did lowest.

Evaluation of the Effectiveness of the Shielding Device and the Organ Dose of Subject During Bone Mineral Density (골밀도검사에서 피검자의 장기선량 측정 및 차폐기구의 효용성 평가)

  • Cho, Yong-In;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.43 no.3
    • /
    • pp.187-194
    • /
    • 2020
  • Bone mineral density is a examination to measure the amount of bone in patients with metabolic bone disease. It is a low dose, but may cause unnecessary exposure to the gonads and other organs located in the periphery when examining the lumbar and proximal femurs. Therefore, the purpose of this study was to evaluated the exposure dose for each organ exposed during the bone mineral density through simulation, and analyzed the applicability of the subject to radiation shielding devices using 3D printing materials. As a result, the highest dose was shown at 11.47 uSv in the breast during lumbar examination and 8.98 uSv in the testis during proximal femur examination. Also, the farther away from the examination site, the lower the effect of the scattering-ray. The shielding effect of using 3D printing shielding device showed high results in proportion to the effective atomic number and specific gravity of the printing material. Among the printing materials, ABS + W showed an effect of at least 78.72 to 96.3 9% compared to the existing lead material.

The Patient Care During Before Radiotherapy in Oral Cavity Cancer (구강내 종양환자의 방사선 치료시의 Patient Care)

  • Jeon Byeong-chul;Park Jae-il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.7 no.1
    • /
    • pp.92-96
    • /
    • 1995
  • All patients who will Undergo irraidiation of the oral cavity cancer will need dental before and during Radiotherapy. The extent of the region and the presence of numerous critical normal tissues(mucosa, gingiva, teeth and the alveolar ridge, alveolar bony structure, etc) in the oral cavity area, injury to which could result in serious functional impairment. Therefore I evaluate the Usefulness of custom-made intraoral shielding device before and during Radiotherapy in oral cavity cancer. Materials and Methods(1) : Manufacture process of Custom-made intraoral shielding device Containing Cerroband. A. Acquisition of impression B. Matrix Constitution C. Separation by Separator D. Sprincle on method E. Trimming F. Spacing G. Fill with Cerroband Materials and Methods (2) A. Preannealing B. TLD Set up C. Annealing D. TLD Reading = Results = Therefore dosimetric characteristics in oral cavity by TLD Compared to isodose curve dose distribution Ipsilateral oral mucosa, Contralateral oral mucosa, alveolar ridge, tongue, dose was reduced by intraoral shielding device containning Cerroband technique Compard to isodose plan = Conclusions = The custom-made intra-oral shielding device containing Cerroband was useful in reducing the Contralateral oral mucosa dose and Volume irradiated.

  • PDF

Study on the design and experimental verification of multilayer radiation shield against mixed neutrons and γ-rays

  • Hu, Guang;Hu, Huasi;Yang, Quanzhan;Yu, Bo;Sun, Weiqiang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.178-184
    • /
    • 2020
  • The traditional methods for radiation shield design always only focus on either the structure or the components of the shields rather than both of them at the same time, which largely affects the shielding performance of the facilities, so in this paper, a novel method for designing the structure and components of shields simultaneously is put forward to enhance the shielding ability. The method is developed by using the genetic algorithm (GA) and the MCNP software. In the research, six types of shielding materials with different combinations of elements such as polyethylene (PE), lead (Pb) and Boron compounds are applied to the radiation shield design, and the performance of each material is analyzed and compared. Then two typical materials are selected based on the experiment result of the six samples, which are later verified by the Compact Accelerator Neutron Source (CANS) facility. By using this method, the optimal result can be reached rapidly, and since the design progress is semi-automatic for most procedures are completed by computer, the method saves time and improves accuracy.

Manufacturing and Characterization of Ophthalmic Materials Using 2D Transition Metal Carbide

  • Seon-Young Park;A-Young Sung
    • Journal of Integrative Natural Science
    • /
    • v.17 no.3
    • /
    • pp.67-73
    • /
    • 2024
  • Hydrophilic contact lens was prepared by dispersing MXene material in a hydrogel mixture, and the purpose of this study was to evaluate its properties as an ophthalmic material. The MXene used in the experiment was manufactured through an etching process using titanium aluminum carbide 312 [Ti3AlC2] and hydrofluoric acid [HF]. For the preparation of hydrophilic contact lenses, 2-hydroxyethyl methacrylate [HEMA], a photoinitiator 2-hydroxy-2-methylpropiophenone [2H2M], and a cross-linker Ethylene glycol dimethacrylate [EGDMA] were used, and UV-rays was irradiated for 50 seconds for photopolymerization. Optical transmittance, refractive index, water content, contact angle, electromagnetic wave shielding ability, and photo-thermal conversion effect were measured to evaluate the physical properties of the manufactured contact lens. Compared to MXene materials, MXene mixed with Dimethyl sulfoxide [DMSO] had superior dispersion ability in organic solvents, and the transparency of the prepared hydrophilic contact lenses was high. MXene did not significantly affect the refractive index and water content, and improved the wettability of the contact lens. In addition, the MXene material used as an additive showed electromagnetic wave shielding ability and photo-thermal conversion effect based on its excellent electrical conductivity. It is judged that the mixture using MXene as an additive can be used as a functional contact lens material for electromagnetic wave shielding and ocular photo-thermal therapy.

Electromagnetic Interference Shielding Effectiveness of Fiber Reinforced Composites Hybrid Conductive Filler (하이브리드 전도성 Filler 섬유강화 복합재료의 전자파 차폐효과)

  • Han, Gil-Young;Song, Dong-Han;Bae, Ji-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.35-39
    • /
    • 2009
  • The main objective of this study was to investigate fiber reinforced composite materials (FRCM) with electromagnetic shielding characteristics using aluminum (Al) film and copper (Cu) meshes. This study investigated the electromagnetic interference (EMI) shielding effectiveness (SE) of fiber reinforced composites filled with Al film, Cu meshes, and nano carbon black as hybrid conductive fillers to provide the electromagnetic shielding property of the fiber reinforced composites. The coaxial transmission line method of ASTM D 4935-89 was used to measure the EMI shielding effectiveness of composites in the frequency range of 300 MHz to 1.5 GHz. The variations of SE of FRCM with Al film, fine Cu, and general Cu meshes are described. The results indicate that the FRCM having Al film exhibited up to 75 dB of SE at 1.5 GHz.