DOI QR코드

DOI QR Code

Preparation and Characteristics of Conducting Polymer-Coated MWCNTs as Electromagnetic Interference Shielding Materials

  • Kim, Yeon-Yi (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Yun, Ju-Mi (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Kim, Hyung-Il (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • Received : 2011.01.05
  • Accepted : 2011.02.28
  • Published : 2011.03.30

Abstract

The conducting polymer-coated multi-walled carbon nanotubes (MWCNTs) were prepared by template polymerization of aniline and pyrrole on the surface of MWCNTs in order to develop the novel electromagnetic interference (EMI) shielding materials. The conducting polymer phases formed on the surface of MWCNTs were confirmed by field emission-scanning electron microscopy and field emission-transmission electron microscopy. Both permittivity and permeability were significantly improved for the conducting polymer-coated MWCNTs due to the intrinsic electrical properties of MWCNTs and the conducting properties of coated polymers. The electromagnetic waves were effectively absorbed based on the permittivity nature of conducting polymer and MWCNTs preventing the secondary interference from reflecting the electromagnetic waves. The highly improved EMI shielding efficiency was also obtained for the conducting polymer-coated MWCNTs showing the synergistic effects by combining MWCNTs and the conducting polymers.

Keywords

References

  1. Wong PTC, Chambers B, Anderson AP, Wright PV. Electron Lett, 28, 1651 (1992). https://doi.org/10.1049/el:19921051
  2. Yu X, Shen Z. J Magn Magn Mater, 321, 2890 (2009). https://doi.org/10.1016/j.jmmm.2009.04.040
  3. Saini P, Choudhary V, Dhawan SK. Polym Adv Technol, 20, 355 (2009). https://doi.org/10.1002/pat.1230
  4. Sudha JD, Sivakala S, Prasanth R, Reena VL, Radhakrishnan Nair P. Compos Sci Technol, 69, 358 (2009). https://doi.org/10.1016/j.compscitech.2008.10.026
  5. Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK. Mater Chem Phys, 113, 919 (2009). https://doi.org/10.1016/j.matchemphys.2008.08.065
  6. Yamada T, Morizane T, Arimitsu T, Miyake A, Makino H, Yamamoto N, Yamamoto T. Thin Solid Films, 517, 1027 (2008). https://doi.org/10.1016/j.tsf.2008.06.047
  7. Thomassin JM, Pagnoulle C, Bednarz L, Huynen I, Jerome R, Detrembleur C. J Mater Chem, 18, 792 (2008). https://doi.org/10.1039/b709864b
  8. Stonier RA. SAMPE J, 27, 9 (1991).
  9. Wu HL, Ma CCM, Yang YT, Kuan HC, Yang CC, Chiang CL. J Polym Sci, Part B: Polym Phys, 44, 1096 (2006). https://doi.org/10.1002/polb.20766
  10. Xie XL, Mai YW, Zhou XP. Mater Sci Eng, Part R: Rep, 49, 89 (2005). https://doi.org/10.1016/j.mser.2005.04.002
  11. Kymakis E, Amaratunga GAJ. Appl Phys Lett, 80, 112 (2002). https://doi.org/10.1063/1.1428416
  12. Ago H, Petritsch K, Shaffer MSP, Windle AH, Friend RH. Adv Mater, 11, 1281 (1999). https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1281::AID-ADMA1281>3.0.CO;2-6
  13. Pomposo JA, Rodriguez J, Grande H. Synth Met, 104, 107 (1999). https://doi.org/10.1016/S0379-6779(99)00061-2
  14. Stafstrom S, Bredas JL, Epstein AJ, Woo HS, Tanner DB, Huang WS, MacDiarmid AG. Phys Rev Lett, 59, 1464 (1987). https://doi.org/10.1103/PhysRevLett.59.1464
  15. Zuo F, Angelopoulos M, MacDiarmid AG, Epstein AJ. Phys Rev B, 39, 3570 (1989). https://doi.org/10.1103/PhysRevB.39.3570
  16. Md Showkat A, Lee KP, Iyengar Gopalan A, Kim SH, Choi SH, Sohn SH. J Appl Polym Sci, 101, 3721 (2006). https://doi.org/10.1002/app.23359
  17. Mattoso LHC, Faria RM, Bulhoes LOS, MacDiarmid AG. J Polym Sci, Part A: Polym Chem, 32, 2147 (1994). https://doi.org/10.1002/pola.1994.080321117
  18. Savitha P, Rao PS, Sathyanarayana DN. Polym Int, 54, 1243 (2005). https://doi.org/10.1002/pi.1834
  19. Cao Y, Smith P, Heeger AJ. Synth Met, 48, 91 (1992). https://doi.org/10.1016/0379-6779(92)90053-L
  20. Luo K, Guo X, Shi N, Sun C. Synth Met, 151, 293 (2005). https://doi.org/10.1016/j.synthmet.2005.06.001
  21. Saini P, Choudhary V, Dhawan SK. Indian J Eng Mater Sci, 14, 436 (2007).
  22. Yang C, Liu P. Synth Met, 160, 768 (2010). https://doi.org/10.1016/j.synthmet.2010.01.018
  23. Chen X, Cai Q, Wang W, Mo G, Jiang L, Zhang K, Chen Z, Wu Z. Chem Mater, 20, 2757 (2008). https://doi.org/10.1021/cm703368u
  24. Das NC, Maiti S. J Mater Sci, 43, 1920 (2008). https://doi.org/10.1007/s10853-008-2458-8
  25. Kim HM, Kim K, Lee CY, Joo J, Cho SJ, Yoon HS, Pejakovic DA, Yoo JW, Epstein AJ. Appl Phys Lett, 84, 589 (2004). https://doi.org/10.1063/1.1641167
  26. Lu G, Li X, Jiang H. Compos Sci Technol, 56, 193 (1996). https://doi.org/10.1016/0266-3538(95)00143-3

Cited by

  1. Effect of oxygen plasma treatment of carbon nanotubes on electromagnetic interference shielding of polypyrrole-coated carbon nanotubes vol.126, pp.S2, 2012, https://doi.org/10.1002/app.36709
  2. Synthesis and high electrochemical performance of polyaniline/MnO2-coated multi-walled carbon nanotube-based hybrid electrodes vol.16, pp.8, 2012, https://doi.org/10.1007/s10008-012-1694-7
  3. Effects of functional grafting on viscoelastic and toughness behaviors of multi-walled carbon nanotubes-reinforced polypropylene nano-composites vol.20, pp.5, 2012, https://doi.org/10.1007/s13233-012-0076-4
  4. Ion conducting properties of poly(ethylene oxide)-based electrolytes incorporating amorphous silica attached with imidazolium salts vol.39, pp.3, 2013, https://doi.org/10.1007/s11164-012-0697-4
  5. Designing of Multiphase Fly Ash/MWCNT/PU Composite Sheet Against Electromagnetic Environmental Pollution vol.45, pp.6, 2016, https://doi.org/10.1007/s11664-016-4436-2