• Title/Summary/Keyword: shielding factor

Search Result 142, Processing Time 0.026 seconds

γ-Ray Shielding Behaviors of Some Nuclear Engineering Materials

  • Mann, Kulwinder Singh
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.792-800
    • /
    • 2017
  • The essential requirement of a material to be used for engineering purposes at nuclear establishments is its ability to attenuate the most penetrating ionizing radiations, gamma $({\gamma})-rays$. Mostly, high-Z materials such as heavy concrete, lead, mercury, and their mixtures or alloys have been used in the construction of nuclear establishments and thus termed as nuclear engineering materials (NEM). The NEM are classified into two categories, namely opaque and transparent, depending on their behavior towards the visible spectrum of EM waves. The majority of NEM are opaque. By contrast, various types of glass, which are transparent to visible light, are necessary at certain places in the nuclear establishments. In the present study, ${\gamma}-ray$ shielding behaviors (GSB) of six glass samples (transparent NEM) were evaluated and compared with some opaque NEM in a wide range of energy (15 keV-15 MeV) and optical thickness (OT). The study was performed by computing various ${\gamma}-ray$ shielding parameters (GSP) such as the mass attenuation coefficient, equivalent atomic number, and buildup factor. A self-designed and validated computer-program, the buildup factor-tool, was used for various computations. It has been established that some glass samples show good GSB, thus can safely be used in the construction of nuclear establishments in conjunction with the opaque NEM as well.

Magnetic Shielding Effect of Amorphous Strips in Low Frequency Field (비정질 연자성재료를 이용한 복층 차폐체의 저주파 자기장 차폐효과)

  • Kim, S.G.;Hur, J.;Park, P.G.;Chung, Y.C.;Kim, Y.B.;Kim, T.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.6
    • /
    • pp.341-345
    • /
    • 1998
  • Magnetic shielding effect of cylinderical ahields made of commericial amorphous ribbons has been studied. The shell-arrangement-order of double shell shield has been found to show a striking differencein shielding factor. In low applied field region, a 2605CO-2705M-shield (outer shell: 2605CO, inner shell: 2705M) yields two times higher shielding factor than a 2705M-2605CO-shield (outer shell: 2705M, inner shell: 2605CO). The reasons are as follows: In case of 2605CO-2705M-shield, the outer shell is not easily saturated and effectively shields the applied field. In addition, the inner shell shows high shielding factor in the field shielded by the outer shell. In case of 2705M-2605CO-shield, the outer shell is saturated at very low-field as well as the inner shell shows low shielding factor in the field shielded by the outer shell.

  • PDF

The Study on Filling Factor of Radiation Shielding Lead-free Sheet Via Screen Printing Method (스크린 프린팅 공법을 통한 방사선 무연 차폐 시트에 관한 연구)

  • Kang, Sang-Sik;Jeong, Ah-Rim;Lee, Su-Min;Yang, Seung-Woo;Kim, Kyo-Tae;Heo, Ye-Ji;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.6
    • /
    • pp.713-718
    • /
    • 2018
  • In many previous studies, monte carlo simulation is used to produce lead-free shielding sheet, and the possibility of radiation shielding capability and weight reduction is presented. But it is difficult to simulation for binder and micro-pores because of In fact it does not provide sufficient information necessary for the commercialization process. Therefore, in this paper, the results of radiation shielding capability corresponding to filling factor was presented by using the screen printing method to provide information on gel-paste required for the commercialization process. In this study, the geometric setup for evaluate of radiation shielding ability was designed to comply with IEC 61331-1:2014 and KS A 4025. In addition, radiation irradiation conditions were 100 kVp filtered with 2.0 mmAl total filtration was applied according to KS A 4021 standard. In this study, Pb $1270{\mu}m$, $BaSO_4$ $3035{\mu}m$, $Bi_2O_3$ $1849{\mu}m$ and $WO_3$ $2631{\mu}m$ were analyzed based on ten value layer. Additionally, the filling factor was analyzed as $BaSO_4$ 38.6%, $Bi_2O_3$ 27.1%, $WO_3$ 30.15%. However, in the case of applying low-temperature high-pressure molding in the future, it is expected that the radiation shielding capability can be sufficiently improved by reducing the porosity while increasing the filling factor.

Shielding effect model and Signal Switching in the multi-layer interconnects (다층 배선에서 차폐효과 모델 및 스위칭에 미치는 영향)

  • 진우진;어영선
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1145-1148
    • /
    • 1998
  • New capacitance modeling and transient analysis for multi-layer interconnects with shielding effect are presented. The upper layer capacitances with under-layer shielding lines are represented by introducing a filling factor η which can be defined as the ratio of upper-layer line length to the total under-layer line width. The upper-layer effective self capacitances considering two extreme cases which the underlayer metals are assumed as a ground or as a Vdd are modeled. The signal transient analysis with shielding effect model is performed.

  • PDF

Gamma ray attenuation behaviors and mechanism of boron rich slag/epoxy resin shielding composites

  • Mengge Dong;Suying Zhou ;He Yang ;Xiangxin Xue
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2613-2620
    • /
    • 2023
  • Excellent thermal neutron absorption performance of boron expands the potential use of boron rich slag to prepare epoxy resin matrix nuclear shielding composites. However, shielding attenuation behaviors and mechanism of the composites against gamma rays are unclear. Based on the radiation protection theory, Phy-X/PSD, XCOM, and 60Co gamma ray source were integrated to obtain the shielding parameters of boron rich slag/epoxy resin composites at 0.015-15 MeV, which include mass attenuation coefficient (µt), linear attenuation coefficient (µ), half value thickness layer (HVL), electron density (Neff), effective atomic number (Zeff), exposure buildup factor (EBF) and exposure absorption buildup factor (EABF).µt, µ, HVL, Neff, Zeff, EBF and EABF are 0.02-7 cm2/g, 0.04-17 cm-1, 0.045-20 cm, 5-14, 3 × 1023-8 × 1023 electron/g, 0-2000, and 0-3500. Shielding performance is BS4, BS3, BS3, BS1 in descending order, but worse than ordinary concrete. µ and HVL of BS1-BS4 for 60Co gamma ray is 0.095-0.110 cm-1 and 6.3-7.2 cm. Shielding mechanism is main interactions for attenuation gamma ray by BS1-BS4 are elements with higher content or higher atomic number via Photoelectric Absorption at low energy range, and elements with higher content via Compton Scattering and Pair Production in Nuclear Field at middle and higher energy range.

Characteristics of Superconductive Pb shield for a Whole Head MEG System (헬멧형 뇌자도 장치로의 활용을 위한 Pb 초전도 차폐의 특성)

  • Yu, K.K.;Kim, K.;Lee, Y.H.;Kwon, H.
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.30-35
    • /
    • 2009
  • We have investigated the characteristics of a superconductive Pb shield for hemispherical shape and plate to improving signal-to-noise ratio(SNR) of biomagnetism. We measured the shielding factor for the position of helmet shape Pb and for changing the distance from Pb surface. To make a uniform magnetic field, a $1.5m{\times}1.5m$ set of the helmholtz coils activated at several frequencies. The shielding factor of hemispherical shape Pb was from 20 to 57 dB and of Pb plate was about $6{\sim}26dB$ as a function of distance from the lead surface. The shielding factor was rapidly reduced as increasing the distance from Pb surface. The white noise of superconductive quantum interference device(SQUID) with a superconductive shield was about $12fT/Hz^{1/2}$ at 1 Hz, $7fT/Hz^{1/2}$ at 100 Hz. The white noise was more increased about two times than conventional SQUID system without Pb shielding. An auditory signal was measured by first order gradiometer and magnetometer with Pb superconductive shield and compared the SNR. The SQUID system with Pb shield had better performance at low frequency noise level.

  • PDF

Analysis of transmission efficiency of the superconducting resonance coil according the materials of cooling system

  • Lee, Yu-Kyeong;Hwang, Jun-Won;Choi, Hyo-Sang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.46-49
    • /
    • 2016
  • The wireless power transfer (WPT) system using a magnetic resonance was based on magnetic resonance coupling of the transmission and the receiver coils. In these system, it is important to maintain a high quality-factor (Q-factor) to increase the transmission efficiency of WPT system. Our research team used a superconducting coil to increase the Q-factor of the magnetic resonance coil in WPT system. When the superconductor is applied in these system, we confirmed that transmission efficiency of WPT system was higher than normal conductor coil through a preceding study. The efficiency of the transmission and the receiver coil is affected by the magnetic shielding effect of materials around the coils. The magnetic shielding effect is dependent on the type, thickness, frequency, distance, shape of materials. Therefore, it is necessary to study the WPT system on the basis of these conditions. In this paper, the magnetic shield properties of the cooling system were analyzed using the High-Frequency Structure Simulation (HFSS, Ansys) program. We have used the shielding materials such as plastic, aluminum and iron, etc. As a result, when we applied the fiber reinforced polymer (FRP), the transmission efficiency of WPT was not affected because electromagnetic waves went through the FRP. On the other hand, in case of a iron and aluminum, transmission efficiency was decreased because of their electromagnetic shielding effect. Based on these results, the research to improve the transmission efficiency and reliability of WPT system is continuously necessary.

Analysis of Radiation Fusion Shielding Performance of Ytterbium Oxide, a Radiation Impermeable Substance (방사선 불투과성 물질 산화이테르븀(Ytterbium oxide)의 방사선 융합 차폐성능 분석)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.87-94
    • /
    • 2021
  • While the shielding substances of radiation shields in medical institutions are beginning to be replaced by environmentally friendly materials, radiation protection according to the shielding properties of environmentally friendly substances is becoming an important factor rather than the existing lead shielding properties. Tungsten and barium sulfate are representative shielding materials similar to lead, and are made in sheets or fiber form with eco-friendly materials. Ytterbium is an impermeable material used as a fluorine compound in the dental radiation field. This study aims to evaluate the shielding performance in the x-ray shielding area by comparing the shielding properties of ytterbium by energy band and that of existing eco-friendly materials. When three types of shielding sheets were fabricated and tested under the same process conditions, the shielding performance of the medical radiation area was about 5 % difference from tungsten. Furthermore, shielding performance was superior to barium sulfate. In the cross-sectional structure of the shielding sheet, there was a disadvantage that the arrangement of particles was not uniform. Ytterbium oxide showed sufficient potential as a medical radiation shielding material, and it is thought that it can improve the shielding performance by controlling the particle arrangement structure and particle size.

The Study on Wind Shielding Effects According to Distance Between Two Ships (선박간 이격거리에 따른 WIND SHIELDING EFFECT 검토)

  • Koo, Myoung-Jun;Ha, Mun-Keun;Choi, Jae-Woong;Bae, Jun-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1413-1417
    • /
    • 2004
  • The environmental elements which naturally occur can result in structural damages and operating faults of vessels under the navigation and mooring. These primary factors are considered as wind, waves and tide. In order to investigate wind shielding effects with respect to wind load conditions between two ships which face the wind directly or slantingly to the wind direction, this numerical simulation was preferred in terms of the variation of wind loads according to different distances, wind velocities and wind directions between two ships. The results were proved to be quite reasonable, comparing with experimental data from Danish Maritime Institute, and the report, "Environmental Conditions And Environmental Loads" published by Det Norske Veritas.

  • PDF

Magnetic Shielding Effectiveness Measurement of Magnetic Steel Sheets in ELF Range

  • Yeon, Kyo-Heum;Son, Derac;Park, Eon-Byeong;Lee, Jae-Young;Do, Kyung-Hwan;Park, Jae-Seg
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.173-176
    • /
    • 2008
  • In this study, a new kind of instrument for measuring the magnetic shielding effectiveness (MSE) was developed using a double yoke; one a magnetizing yoke and the other a sensing yoke. Using the developed instrument, the MSE could be measured for a steel sheet specimen in the ELF range, where the magnetic permeability contributes to the MSE at low frequencies and eddy currents contributes to the MSE high frequencies with < 0.1 dB reproducibility. The developed measuring method can be applied to quality control in a steel sheet company producing EMI/EMC shielding materials.