DOI QR코드

DOI QR Code

Analysis of Radiation Fusion Shielding Performance of Ytterbium Oxide, a Radiation Impermeable Substance

방사선 불투과성 물질 산화이테르븀(Ytterbium oxide)의 방사선 융합 차폐성능 분석

  • Kim, Seon-Chil (Department of Biomedical Engineering, School of Medicine, Keimyung University)
  • 김선칠 (계명대학교 의용공학과)
  • Received : 2021.03.03
  • Accepted : 2021.04.20
  • Published : 2021.04.28

Abstract

While the shielding substances of radiation shields in medical institutions are beginning to be replaced by environmentally friendly materials, radiation protection according to the shielding properties of environmentally friendly substances is becoming an important factor rather than the existing lead shielding properties. Tungsten and barium sulfate are representative shielding materials similar to lead, and are made in sheets or fiber form with eco-friendly materials. Ytterbium is an impermeable material used as a fluorine compound in the dental radiation field. This study aims to evaluate the shielding performance in the x-ray shielding area by comparing the shielding properties of ytterbium by energy band and that of existing eco-friendly materials. When three types of shielding sheets were fabricated and tested under the same process conditions, the shielding performance of the medical radiation area was about 5 % difference from tungsten. Furthermore, shielding performance was superior to barium sulfate. In the cross-sectional structure of the shielding sheet, there was a disadvantage that the arrangement of particles was not uniform. Ytterbium oxide showed sufficient potential as a medical radiation shielding material, and it is thought that it can improve the shielding performance by controlling the particle arrangement structure and particle size.

의료기관의 방사선 차폐체의 차폐물질이 친환경소재로 변화되면서 기존 납의 일반된 차폐특성보다 차폐물질의 특성에 따른 방사선 방어가 중요한 요소로 대두되고 있다. 납과 유사한 차폐물질로 대표적인 텡스텐과 황산바륨은 친환경 소재로 시트나, 섬유 형태로 제작되어 사용되고 있다. 이테르븀은 치과 방사선영역에서 불투과성 물질로 불소화합물로 사용되었으며, 에너지대별 차폐특성과 기존 친환경소재의 차폐특성과 비교하여 x-선 차폐영역에서 차폐성능을 평가하고자 한다. 동일한 공정과 조건하에 세 종류의 차폐시트를 제작하여 실험하였으며, 의료방사선 영역에서 텅스텐과 약 5 % 차폐성능 차이가 나타났으며, 황산바륨보다 우수한 차폐성능을 보였다. 차폐시트의 단면 구조에서는 인자의 배열이 일정하지 못하는 큰 단점을 보였다. 따라서 산화이테르븀은 의료방사선 차폐물질로 충분한 가능성을 보였으며, 입자배열 구조와 입자크기 조절로 차폐성능을 향상시킬 수 있을 것으로 사료된다.

Keywords

References

  1. A. K. Singh, R. K. Singh, B. Sharma & A. K. Tyagi. (2017). Characterization and Biocompatibility Studies of Lead Free X-ray Shielding Polymer Composite for Healthcare Application. Radiat. Phys. Chem. 138, 9-15. DOI : 10.1016/j.radphyschem.2017.04.016
  2. H. A. Maghrabi, A. Vijayan, F. Mohaddes, P. Deb & L. Wang. (2016). Evaluation of X-ray radiation shielding performance of barium sulphate-coated fabrics. Fibers and Polymers, 17(12), 2047-2054. DOI : 10.1007/s12221-016-5850-z
  3. S. C. Kim. (2021). Prediction of Shielding Performance by Thickness by Comparing the Single and Laminated Structures of Lead-free Radiation Fusion Shielding Sheets. Journal of the Korea Convergence Society, 12(1), 105-110. DOI : 0.15207/JKCS.2021.12.1.105 https://doi.org/10.15207/JKCS.2021.12.1.105
  4. D. Adliene, L. Gilys & E. Griskonis. (2020). Development and Characterization of New Tungsten and Tantalum Containing Composites for Radiation Shielding in Medicine. Nucl. Instrum. ethods Phys. Res. B, 467, 21-26. DOI : 10.1016/j.nimb.2020.01.027
  5. S. C. Kim. (2018). Physical Properties of Medical Radiation Shielding Sheet According to Shielding Materials Fusion and Resin Modifier Properties. Journal of the Korea Convergence Society, 9(12), 99-106. DOI : 10.15207/JKCS.2018.9.12.099
  6. Nurul Z. Noor Azman et al. (2016). Effect of Bi2O3 particle sizes and addition of starch into Bi2O3-PVA composites for X-ray shielding. Applied Physics A, 122(9), 818-. DOI : 10.1007/s00339-016-0329-8
  7. M. K. Badawy, MAppSci, P. D. PhD, R. C. MBBS. PhD & O. F. MBBS. PhD. (2016). A Review of Radiation Protection Solutions for the Staff in the Cardiac Catheterisation Laboratory. Heart, Lung and Circulation, 25(10), 961-967. DOI : 10.1016/j.hlc.2016.02.021
  8. S. C. Kim & H. M. Jung. (2013). A Study on Performance of Low-Dose Medical Radiation Shielding Fiber (RSF) in CT Scans. International Journal of Technology, 4(2), 178-187. DOI : 10.14716/ijtech.v4i2.107
  9. N. J. AbuAlRoos, M. N. Azman, N. A. B. Amin & R. Zainon. (2020). Tungsten-based material as promising new lead-free gamma radiation shielding material in nuclear medicine. Physica Medica. 78, 48-57. DOI : 10.1016/j.ejmp.2020.08.017
  10. N. Aral, F. B. Nergis & C. Candan. (2015). An alternative X-ray shielding material based on coated textiles. Textile Research Journal, 86(8), 803-811. DOI : 10.1177/0040517515590409
  11. L. Seenappa, H. C. Manjunatha, B. M. Chandrika & H. Chikka. (2017). A Study of Shielding Properties of X-ray and Gamma in Barium Compounds. Journal of Radiation Protection and Research, 42(1), 26-32. DOI : 10.14407/jrpr.2017.42.1.26
  12. Y. Liu, J. Liu, K. Ai, Q. Yuan & L. Lu. (2014). Recent advances in ytterbium-based contrast agents for in vivo X-ray computed tomography imaging: promises and prospects. Contrast Media Mol. Imaging, 9(1), 26-36. DOI : 10.1002/cmmi.1537
  13. Y. S. Choi, I. S. Kim, S. Y. Choi & E. I. Yang. (2019). Fundamental Properties and Radioactivity Shielding Characteristics of Mortar Specimen Utilizing CRT Waste Glass as Fine Aggregate. Journal of the Korea Institute for Structural Maintenance and Inspection, 23(1), 163-170. DOI : 10.11112/jksmi.2019.23.1.163
  14. S. M. Midgley. (2004). A parameterization scheme for the x-ray linear attenuation coefficient and energy absorption coefficient. Physics in Medicine & Biology, 49(2), 307-325. DOI : 10.1088/0031-9155/49/2/009
  15. J. W. Shin et al. (2014). Polyethylene/boron-containing composites for radiation shielding. Thermochimica Acta, 585(10), 5-9. DOI : 10.1016/j.tca.2014.03.039
  16. S. E. Gwaily, H. H. Hassan, M. M. Badawy & M. Madani. (2002). Study of electrophysical characteristics of lead-natural rubber composites as radiation shields. POLYMER COMPOSITES, 23(6), 1068-1075. DOI : 10.1002/pc.10502
  17. N. Papadopoulos et al. (2009). Comparison of Lead-free and Conventional x-ray aprons for Diagnostic Radiology. World Congress on Medical Physics and Biomedical Engineering, 25(3), 544-546. DOI : 10.1007/978-3-642-03902-7_155
  18. Ali Basheer Azeez, Kahtan S. Mohammed, A. M. Mustafa Al Bakri, Hana Ihsan Hasan & Omar A. Abdulkareem. (2014). Radiation Shielding Characteristics of Concretes Incorporates Different Particle Sizes of Various Waste Materials. Advanced Materials Research, 925, 190-194. DOI : 10.4028/www.scientific.net/AMR.925.190
  19. J. P. McCaffrey, H. Shen, B. Downton & E. M. Hing. (2007) Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Medical physics, 34(2), 530-537. DOI : 10.1118/1.2426404
  20. Neftali L. V. Carreno et al. (2012). YbF3/SiO2 Fillers as Radiopacifiers in A Dental Adhesive Resin. Nano-Micro Letters, 4(3), 189-196. DOI : 10.1007/BF03353713
  21. B. P. Fox, K. Simmons-Potter, J. H. Simmons, W. J. Thomes Jr., R. P. Bambha & D. A. V. Kliner. (2007). Investigation of radiation-induced photodarkening in passive erbium-, ytterbium-, and Yb/Er co-doped optical fibers. Nanophotonics and Macrophotonics for Space Environments. 6713. DOI : 10.1117/12.735212
  22. L. Jianhua et al. (2013). Large-Scale and Facile Synthesis of Biocompatible Yb-Based Nanoparticles as a Contrast Agent for In Vivo X-Ray Computed Tomography Imaging. Current Topics in Medicinal Chemistry, 13(4), 513-518. DOI : 10.2174/1568026611313040011
  23. G. Panuccio, R. K. Greenberg, K. Wunderle, T. M. Mastracci, M. G. Eagleton & L. Davros. (2011). Comparison of Indirect Radiation Dose Estimates with Directly Measured Radiation Dose for Patients and Operators during Complex Endovascular Procedures. Journal of Vascular Surgery, 53(4), 885-894.e1. DOI : 10.1016/j.jvs.2010.10.106
  24. F. M. Collares, F. A. Ogliari, G. S. Lima, V. R. C. Fontanella, E. Piva & S. M. W. Samuel. (2010). Ytterbium trifluoride as a radiopaque agent for dental cements. International Endodontic Journal, 43(9), 792-797. DOI : 10.1111/j.1365-2591.2010.01746.x