• Title/Summary/Keyword: sherwood numbers

Search Result 24, Processing Time 0.021 seconds

Studies on Nusselt and Sherwood number for diffusion-advective convection during physical vapor transport of Hg2Br2

  • Kim, Geug Tae;Kwon, Moo Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.3
    • /
    • pp.127-136
    • /
    • 2021
  • This paper is dedicated to numerical simulation for diffusion-advective convection in a square cavity during physical vapor transport of Hg2Br2. Flow characteristics of the temperature difference between the source and crystal regions, 50℃ (300℃ → 250℃), partial pressures of component argon of 20 Torr and 100 Torr are investigated and presented as velocity vectors and streamlines, isotherms and iso-mass concentrations contours. Moreover, alterations of average Nusselt and average Sherwood numbers with (a) the source and crystal regions, (b) the pressures of component argon of 20 Torr and 100 Torr are analyzed and addressed in details. Both average Nusselt and average Sherwood numbers are seen to decrease with the increasing values of the partial pressures of component argon. Also, it is found that for the two different partial pressures of component argon, average Nusselt numbers at the source region are greater than at the crystal region, and inversely, average Sherwood numbers at the crystal region are greater than the source region by a factor of 3.

An Experimental Study of Local Mass Transfer Characteristics on Inclined Flat Plate (경사진 평판에서의 국소물질전달 특성에 관한 실험적 연구)

  • Yoo, Seong-Yeon;Jo, Woo-Sik;Cho, Woong-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1335-1341
    • /
    • 2011
  • The purpose of this research is to investigate how separated and reattached flow affects mass transfer, by comparing the local mass transfer characteristics on an inclined flat plate with those on a parallel flat plate. The local mass transfer coefficients for the flat plate were measured using the naphthalene sublimation technique; the inclined angle of the flat plate was varied from $-10^{\circ}$ to $10^{\circ}$ at $5^{\circ}$ intervals, and the free-stream velocity was varied from 2m/s to 15m/s. At positive inclined angles, the local Sherwood numbers decreased gradually because the boundary-layer thickness increased. On the other hand, for negative inclined angles, the local Sherwood numbers assumed the minimum value at the separation point of the recirculation flow and the maximum value at the reattachment point. The average Sherwood numbers for both positive and negative inclined angles were lower than those in the case of the parallel plate.

Non-absorbable Gas Effects on Heat and Mass Transfer in Falling Film Absorption

  • Kim, Byongjoo;Lee, Chunkyu
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.581-589
    • /
    • 2003
  • Film absorption involves simultaneous heat and mass transfer in the gas-liquid system. While the non-absorbable gas does not participate directly In the absorption process. its pretence does affect the overall heat and mass transfer. An experimental study was performed to investigate the heat and mass transfer characteristics of LiBr-H$_2$O solution flow ing over 6-row horizontal tubes with the water vapor absorption in the pretence of non-absorbable gases. The volumetric concentration of non-absorbable gas, air, was varied from 0.17 to 10.0%. The combined effects of the solution flow rate and its concentration on the heat and mass transfer coefficients were also examined. The presence of 2% volumetric concentration of air resulted in a 25% reduction in the Nusselt number and 41% reduction in the Sherwood number Optimum film Reynolds number was found to exist at which the heat and mass transfer reach their maximum value independent of air contents. Reduced Nusselt and Sherwood numbers. defined as the ratio of Nusselt and Sherwood numbers at given non-absorbable gas content to that with pure water vapor, were correlated to account for the reduction in the heat and mass transfer due to non-absorbable gases in a falling film absorption process.

Effect of Diameter and Length on the Absorption Performance in a Vertical Absorber Tube (수직형 흡수기 성능에 미치는 흡수기 전열관의 직경과 길이의 영향)

  • 서정훈;조금남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1214-1222
    • /
    • 2001
  • The present study investigated the effect of diameter and length on the absorption performance of a vertical falling film type absorber using $LiBr-H_2$O solution of 60 wt%. The parameters were diameter of absorber (17.2, 23.4, 31.1 mm), length of absorber (771, 1150, 1528 mm), and film Reynolds numbers (50, 70, 90, 110, 130, 150). As the diameter of the absorber was increased, the absorption mass flux, Sherwood number, heat flux, and heat transfer coefficient were increased, in which Sherwood number and heat transfer coefficient were increased up to 13% and 30% respectively. As the length of the absorber was increased, the total absorption rate and heat transfer coefficient were increased by 37% and 35% respectively, while the absorption mass flux was decreased.

  • PDF

Effect of degree of superheat of LiBr aqueous solution on the vapor absorption process for an air-cooled absorption cooling system (공냉형 흡수식 냉방 시스템에서 LiBr 수용액의 과열도가 증기 흡수에 미치는 영향)

  • Kim, S.C.;Oh, M.D.;Lee, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.122-133
    • /
    • 1997
  • Numerical analysis using finite volume method has been carried out to examine the effect of degree of superheat of LiBr aqueous solution on heat and mass transfer occurred in absorption process. According to the result of this study, it was found that refrigerant vaper was generated at the entrance region of absorber when LiBr aqueous soltion was superheated. As the degree of superheat increases, heat transfer rate increases and vapor absorption rate decreases. The increase in averaged Nusselt and Sherwood numbers could be found as film Reynolds number increases. The larger the degree of superheat, the greater the averaged Nusselt and Sherwood numbers.

  • PDF

Interaction of casson nanofluid with Brownian motion: Temperature profile with shooting method

  • Iqbal, Waheed;Jalil, Mudassar;Khadimallah, Mohamed A.;Hussain, Muzamal;Naeem, Muhammad N.;Al Naim, Abdullah F.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.10 no.4
    • /
    • pp.349-357
    • /
    • 2021
  • In present study, the numerical investigations are carried out for effects of suction and blowing on boundary layer slip flow of casson nano fluid along permeable stretching cylinder in an exponential manner. The modeled PDEs are changed into nonlinear ODEs through appropriate nonlinear transformations. Change in physical quantities like friction coefficient, Nusselt and Sherwood numbers with variation of the aforementioned parameters are also examined and their numerical values are listed in the form of tables. Effects of Reynold number, suction parameter, Prandtl number, Lewis number, Brownian motion parameter and thermophoresis parameter are seen graphically with temperature profile.

Comparison of the Dehumidification Performance Between LiCl and LiBr in a Liquid Desiccant Dehumidifying Element Having Criss-Cross Sinusoidal Channels (Celdek) (교차 적층된 파형 액체 제습 소자 (Celdek)에서 LiCl과 LiBr 수용액의 제습 성능 비교)

  • Kim, Nea-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.27-34
    • /
    • 2018
  • Recently, liquid desiccant systems have received attention for the dehumidification of air. LiCl and LiBr are widely used in liquid desiccant systems due to their excellent thermo-physical properties. In this study, dehumidification tests were conducted with Celdek elements using LiCl and LiBr. During the tests, the dry and wet-bulb air temperatures were maintained at $35^{\circ}C$ and $28^{\circ}C$, respectively. The solution temperature was $20^{\circ}C$, the solution concentration was 50%, the solution circulation rate was 50 kg/h, and the frontal air velocity was varied from 2.0 to 4.0 m/s. The results show that the amount of dehumidification increased as the frontal velocity increased. On average, LiCl showed 27% higher dehumidification performance than LiBr, which was probably due to the lower saturation of the absolute humidity of LiCl compared with that of LiBr. On the other hand, LiBr yielded 12% larger pressure drop than LiCl. In general, the Sherwood numbers of LiCl and LiBr were approximately the same, showing that the effect of the desiccant on the Sherwood number was insignificant. Existing correlations highly overpredicted the present Sherwood numbers.

Study on the Optimization of Absorption Performance of the Vertical Tube Absorber with Falling Film (수직 액막형 흡수기의 성능 최적화에 관한 연구)

  • Kim, Jung-Kuk;Cho, Keum-Nam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.830-838
    • /
    • 2005
  • The present study investigated the optimization of the absorption performance of the vertical absorber tube with falling film by considering heat and mass transfer simultaneously. Effects of film Reynolds number, geometric parameters by insert device (spring) and flow pattern on heat and mass transfer performances have been also investigated. Especially, effects of coolant flow rate and the flow pattern by geometric parameters has been observed for the total heat and mass transfer rates through both numerical and experimental studies. Based on both predicted values, the optimal coolant flow rate was predicted as 1.98 L/min. The maximum absorption rate of the spring inserted tube was increased by the maximum of $20.0\%$ than those for uniform film of bare tube. Average Sherwood numbers and Nusselt numbers were increased as Reynolds numbers increased under the dynamic and geometric conditions showing the maximum absorption performance.

NUMERICAL SOLUTIONS OF AN UNSTEADY 2-D INCOMPRESSIBLE FLOW WITH HEAT AND MASS TRANSFER AT LOW, MODERATE, AND HIGH REYNOLDS NUMBERS

  • AMBETHKAR, V.;KUSHAWAHA, D.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.2
    • /
    • pp.89-107
    • /
    • 2017
  • In this paper, we have proposed a modified Marker-And-Cell (MAC) method to investigate the problem of an unsteady 2-D incompressible flow with heat and mass transfer at low, moderate, and high Reynolds numbers with no-slip and slip boundary conditions. We have used this method to solve the governing equations along with the boundary conditions and thereby to compute the flow variables, viz. u-velocity, v-velocity, P, T, and C. We have used the staggered grid approach of this method to discretize the governing equations of the problem. A modified MAC algorithm was proposed and used to compute the numerical solutions of the flow variables for Reynolds numbers Re = 10, 500, and 50000 in consonance with low, moderate, and high Reynolds numbers. We have also used appropriate Prandtl (Pr) and Schmidt (Sc) numbers in consistence with relevancy of the physical problem considered. We have executed this modified MAC algorithm with the aid of a computer program developed and run in C compiler. We have also computed numerical solutions of local Nusselt (Nu) and Sherwood (Sh) numbers along the horizontal line through the geometric center at low, moderate, and high Reynolds numbers for fixed Pr = 6.62 and Sc = 340 for two grid systems at time t = 0.0001s. Our numerical solutions for u and v velocities along the vertical and horizontal line through the geometric center of the square cavity for Re = 100 has been compared with benchmark solutions available in the literature and it has been found that they are in good agreement. The present numerical results indicate that, as we move along the horizontal line through the geometric center of the domain, we observed that, the heat and mass transfer decreases up to the geometric center. It, then, increases symmetrically.

Mass transfer study of double diffusive natural convection in a two-dimensional enclosure during the physical vapor transport of mercurous bromide (Hg2Br2): Part II. Mass transfer (브로민화 수은(I)(Hg2Br2) 물리적 증착공정의 2차원 밀폐공간에서 이중확산 자연 대류에서의 물질전달 연구: Part II. 물질전달)

  • Sung Ho Ha
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.4
    • /
    • pp.145-152
    • /
    • 2023
  • The average Nusselt numbers in the source and crystal region for the variation of thermal Grashof number (Grt) in the range of 2.31 × 104 ≤ Grt ≤ 4.68 × 104 are obtained through numerical simulations. It is shown the average Nusselt number in the crystal region is more than twice as large as the average Nusselt number in the source region. The average Nusselt number in the source region shows an increasing tendency with increasing the thermal Grashof number, Grt, while the average Nusselt number in the crystal region shows a decreasing tendency with increasing thermal Grashof number, Grt. For the variation of the solutal Grashof number (Grs) in the ran ge of 3.28 × 105 ≤ Grs ≤ 4.43 × 105, the average Sherwood number in the source region and crystal region tends to decrease as the solutal Grashof number, Grs increases. The average Sherwood number in the crystal region is about four times greater than the average Sherwood number in the source region.