DOI QR코드

DOI QR Code

Interaction of casson nanofluid with Brownian motion: Temperature profile with shooting method

  • Iqbal, Waheed (Department of Mathematics, Govt. College University Faisalabad) ;
  • Jalil, Mudassar (Department of Mathematics, COMSATS Institute of Information Technology) ;
  • Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Naeem, Muhammad N. (Department of Mathematics, Govt. College University Faisalabad) ;
  • Al Naim, Abdullah F. (Department of Physics, College of Science, King Faisal University) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • 투고 : 2020.11.22
  • 심사 : 2020.12.08
  • 발행 : 2021.04.25

초록

In present study, the numerical investigations are carried out for effects of suction and blowing on boundary layer slip flow of casson nano fluid along permeable stretching cylinder in an exponential manner. The modeled PDEs are changed into nonlinear ODEs through appropriate nonlinear transformations. Change in physical quantities like friction coefficient, Nusselt and Sherwood numbers with variation of the aforementioned parameters are also examined and their numerical values are listed in the form of tables. Effects of Reynold number, suction parameter, Prandtl number, Lewis number, Brownian motion parameter and thermophoresis parameter are seen graphically with temperature profile.

키워드

과제정보

This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 16794/01/2020.

참고문헌

  1. Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., Int. J., 35(1), 147-57. https://doi.org/10.12989/scs.2020.35.1.147
  2. Agranat, V.M. (1988), "Effect of pressure gradient on friction and heat transfer in a dusty boundary layer", Fluid Dyn., 23, 729-732. http://dx.doi.org/10.1007/BF02614150
  3. Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., Int. J., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421
  4. Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X
  5. Akbas, S.D. (2017b), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., Int. J., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399
  6. Akbas, S.D. (2018a), "Large deflection analysis of a fiber reinforced composite beam", Steel Compos. Struct., Int. J., 27(5), 567-576. https://doi.org/10.12989/scs.2018.27.5.567
  7. Akbas, S.D. (2018b), "Geometrically nonlinear analysis of a laminated composite beam", Struct. Eng. Mech., Int. J., 66(1), 27-36. https://doi.org/10.12989/sem.2018.66.1.027
  8. Akbas, S.D. (2018c), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., Int. J., 26(6), 733-743. https://doi.org/10.12989/scs.2018.26.6.733
  9. Akbas, S.D. (2018d), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., Int. J., 67(4), 337-346. https://doi.org/10.12989/sem.2018.67.4.337
  10. Akbas, S.D. (2018e), "Nonlinear thermal displacements of laminated composite beams", Coupled Syst. Mech., Int. J., 7(6), 691-705. https://doi.org/10.12989/csm.2018.7.6.691
  11. Akbas, S.D. (2019a), "Nonlinear static analysis of laminated composite beams under hygro-thermal effect", Struct. Eng. Mech., Int. J., 72(4), 433-441. https://doi.org/10.12989/sem.2019.72.4.433
  12. Akbas, S.D. (2019b), "Post-buckling analysis of a fiber reinforced composite beam with crack", Eng. Fract. Mech., 212, 70-80. https://doi.org/10.1016/j.engfracmech.2019.03.007
  13. Akbas, S.D. (2019c), "Hygrothermal post-buckling analysis of laminated composite beams", Int. J. Appl. Mech., 11(1), 1950009. https://doi.org/10.1142/S1758825119500091
  14. Akbas, S.D. (2019d), "Forced vibration analysis of functionally graded sandwich deep beams", Coupled Syst. Mech., Int. J., 8(3), 259-271. https://doi.org/10.12989/csm.2019.8.3.259
  15. Akbas, S.D. (2020a), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., Int. J., 35(6), 729-737. https://doi.org/10.12989/scs.2020.35.6.729
  16. Akbas, S.D. (2020b), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., Int. J., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277
  17. Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., Int. J., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403
  18. Al-Maliki, A.F., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Computat. Des., Int. J., 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177
  19. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
  20. Baaskaran, N., Ponappa, K. and Shankar, S. (2018), "Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load", Steel Compos. Struct., Int. J., 28(2), 179-194. https://doi.org/10.12989/scs.2018.28.2.179
  21. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., Int. J., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699
  22. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., Int. J., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443
  23. Chakrabarti, K.M. (1974), "Note on Boundary layer in a dusty gas", Am. Inst. Aeronaut. Astronaut. J., 12, 1136-1137. http://dx.doi.org/10.2514/3.49427
  24. Chen, J., Zhuang, Y., Fang, H., Liu, W., Zhu, L. and Fan, Z. (2019), "Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading", Steel Compos. Struct., Int. J., 31(2), 133-148. https://doi.org/10.12989/scs.2019.31.2.133
  25. Civalek, O. (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. Part B: Eng., 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030
  26. Derakhshandeh, J.F. and Alam, M.M. (2020), "Reynolds number effect on the flow past two tandem cylinders", Wind Struct., Int. J., 30(5), 475-483. https://doi.org/10.12989/was.2020.30.5.475
  27. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porositydependent homogenization scheme", Adv. Nano Res., Int. J., 7(2), 135-143. 10.12989/anr.2019.7.2.135
  28. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., Int. J., 7(1), 39-49. 10.12989/anr.2019.7.1.039
  29. Iqbal, W., Naeem, M.N. and Jalil, M. (2019), "Numerical analysis of Williamson fluid flow along an exponentially stretching cylinder", AIP Advances, 9(5), 055118. http://dx.doi.org/10.1063/1.50927377
  30. Ishak, A., Nazar, R. and Pop, I. (2008), "Uniform suction/blowing effect on flow and heat transfer due to stretching cylinder", App. Math. Mod., 32, 2059-2066. http://dx.doi.org/10.1016/j.apm.2007.06.036
  31. Ishak, A., Nazar, R. and Pop, I. (2009), "Boundary layer flow and heat transfer over an unsteady stretching vertical surface", Meccanica, 44(4), 369-375. https://doi.org/10.1007/s11012-008-9176-9
  32. Karami, B., Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., Int. J., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201
  33. Khan, M. and Malik, R. (2015), "Forced convective heat transfer to Sisko fluid flow past a stretching cylinder", AIP Advances, 5(12), 127202. http://dx.doi.org/10.1063/1.4937346
  34. Konch, J. and Hazarika, G.C. (2017), "Unsteady Hydro magnetic flow of dusty fluid over a stretching cylinder with variable viscosity and thermal conductivity", Int. J. Adv. Sci. Tech., 99, 57-70. http://dx.doi.org/10.14257/ijast.2017.99.05
  35. Imtiaz, M., Hayat, T. and Alsaedi, A. (2016a), "Mixed convection flow of Casson nanofluid over a stretching cylinder with convective boundary conditions", Adv. Power Tech., 27(5), 2245-2256. https://doi.org/10.1016.j.apt.2016.08.011 https://doi.org/10.1016.j.apt.2016.08.011
  36. Imtiaz, M., Hayat, T. and Alsaedi, A. (2016b), "MHD convective flow of Jeffrey fluid due to a curved stretching surface with homogeneous-heterogeneous reactions", Plos one, 11(9), e0161641. https://doi.org/10.1371/journal.pone.0161641
  37. Iqbal, W., Naeem, M.N. and Jalil, M. (2019), "Numerical analysis of Williamson fluid flow along an exponentially stretching cylinder", AIP Adv., 9(5), 055118. https://doi.org/10.1063/1.5092737
  38. Ishak, A., Nazar, R. and Pop, I. (2008), "Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet", Heat Mass Transfer, 44(8), 921-927. https://doi.org/10.1007/s00231-007-0322-z
  39. Loghman, A., Faegh, R.K. and Arefi, M. (2018), "Two dimensional time-dependent creep analysis of a thick-walled FG cylinder based on first order shear deformation theory", Steel Compos. Struct., Int. J., 26(5), 533-547. https://doi.org/10.12989/scs.2018.26.5.533
  40. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., Int. J., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889
  41. Mahdy, A. (2015), "Heat transfer and flow of a Casson fluid due to a stretching cylinder with the soret and dufour effects", J. Eng. Phys. Thermophy., 88(4), 928-936. https://doi.org/10.1007/s10891-015-1267-6
  42. Malik, M.Y., Naseer, M., Nadeem, S. and Rehman, A. (2013), "The boundary layer flow of Casson nanofluid over an exponentially stretching cylinder", Appl. Nanosci., 4, 869-873. https://doi.org/10.1007/s 13204-013-0267-0
  43. Malik, M.Y., Hussain, A., Salahuddin, T., Awais, M., Bilal, S. and Khan, F. (2016), "Flow of Sisko fluid over a stretching cylinder and heat transfer with viscous dissipation and variable thermal conductivity: A numerical study", AIP Advances, 6(4), 045118. https://doi.org/10.1063/1.4948458
  44. Moghaddam, S.H. and Masoodi, A.R. (2019), "Elastoplastic nonlinear behavior of planar steel gabled frame", Adv. Computat. Des., Int. J., 4(4), 397-413. https://doi.org/10.12989/acd.2019.4.4.397
  45. Naseer, M., Malik, M.Y., Nadeem, S. and Rehman, A. (2014), "The boundary layer flow of hyperbolic tangent fluid over a vertical exponentially stretching cylinder", Alexandria Eng. J., 53, 747-750. https://doi.org/10.1016/j.aej.2014.05.001
  46. Nath, G. (1970), "DUSTY VISCOUS-FLUID FLOW BETWEEN ROTATING COAXIAL CYLINDERS", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 40(3), 257.
  47. Rad, M.H.G., Shahabian, F. and Hosseini, S.M. (2020), "Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model", Steel Compos. Struct., Int. J., 35(1), 77-92. https://doi.org/10.12989/scs.2020.35.1.077
  48. Rasekh, A., Ganji, D.D., Tavakoli, S., Ehsani, H. and Naeejee, S. (2014), "MHD flow and heat transfer of dusty fluid over a stretching hollow cylinder with a convective boundary conditions", Heat Trans. Asian Res., 43(3), 221-232. https://doi.org/10.1002/htj.21073
  49. Rebhi, A.D. (2010), "On boundary layer flow of dusty gas from a horizontal circular cylinder", Braz. J. Chem. Eng., 27(4), 653-662. http://dx.doi.org/10.1590/S0104-66322010000400017
  50. Rehman, A. (2015), "Boundary layer flow and heat transfer of Micropolar Fluid over a vertical exponentially stretching cylinder", Appl. Compos. Math., 4(6), 424-430. http://dx.doi.org/10.11648/j.acm.20150406.15
  51. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., Int. J., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265
  52. Saffman, P.G. (1962), "On the stability of laminar flow of a dusty gas", J. Fluid Mech., 13, 120-128. https://doi.org/10.1017/S0022112062000555
  53. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., Int. J., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805
  54. Salahuddin, T., Malik, M.Y., Hussain, A., Awais, M. and Bilal, S. (2017), "Mixed convection boundary layer flow of Williamson fluid with slip conditions over a stretching cylinder by using Keller-box method", Int. J. Nonlinear Sci. Numer. Simul., 18(1), 9-17. https://doi.org/10.1515/ijnsns.2015.0090
  55. Shadravan, S., Ramseyer, C.C. and Floyd, R.W. (2019), "Comparison of structural foam sheathing and oriented strand board panels of shear walls under lateral load", Adv. Computat. Des., Int. J., 4(3), 251-272. https://doi.org/10.12989/acd.2019.4.3.251
  56. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., Int. J., 7(5), 337-349. 10.12989/anr.2019.7.5.337
  57. Sharma, N. and Panda, S.K. (2020), "Multiphysical numerical (FE-BE) solution of sound radiation responses of laminated sandwich shell panel including curvature effect", Comput. Mathe. Applicat., 80(5), 1221-1239. https://doi.org/10.1016/j.camwa.2020.06.010
  58. Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., Int. J., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
  59. Sofiyev, A.H., Yucel, K., Avcar, M. and Zerin, Z. (2006), "The dynamic stability of orthotropic cylindrical shells with nonhomogenous material properties under axial compressive load varying as a parabolic function of time", J. Reinf. Plastics Compos., 25(18), 1877-1886. https://doi.org/10.1177/0731684406069914
  60. Turkyilmazoglu, M. (2011), "Thermal radiation effects on the time-dependent MHD permeable flow having variable viscosity", Int. J. Thermal Sci., 50(1), 88-96. https://doi.org/10.1016/j.ijthermalsci.2010.08.016
  61. Turkyilmazoglu, M. (2016), "Natural convective flow of nanofluids past a radiative and impulsive vertical plate", J. Aerosp. Eng., 29(6), 04016049. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000643
  62. Turkyilmazoglu, M. (2020), "Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability analysis", Comput. Methods Programs Biomed., 187, 105171. https://doi.org/10.1016/j.cmpb.2019.105171
  63. Wang, C.Y. and Ng, C-O. (2011), "Slip flow due to a stretching cylinder", Int. J. Non-Lin. Mech., 46, 1191-1194. https://doi.org/10.1016/j.ijnonlinmec.2011.05.04
  64. Wang, L., Liu, J., Li, X., Shi, J., Hu, J., Cui, R., Zhang, Z.L., Pang, D.W. and Chen, Y. (2011), "Growth propagation of yeast in linear arrays of microfluidic chambers over many generations", Biomicrofluidics, 5(4), 044118. https://doi.org/10.1063/1.3668243
  65. Yuksel, Y.Z. and Akbas, S.D. (2019), "Buckling analysis of a fiber reinforced laminated composite plate with porosity", J. Computat. Appl. Mech., 50(2), 375-380. https://doi.org/10.22059/JCAMECH.2019.291967.448