• Title/Summary/Keyword: shell mold

Search Result 60, Processing Time 0.02 seconds

A Study on Heat Transfer in Sand Molds (사형(砂型)의 열전달(熱傳達)에 관(關)한 연구(硏究))

  • Lee, Jong-Nam;Kim, Kwang-Bea
    • Journal of Korea Foundry Society
    • /
    • v.2 no.1
    • /
    • pp.2-11
    • /
    • 1982
  • In order to investigate the relationship between the thermal characteristics of the various molds as green sand mold, dry sand mold, $CO_2$ mold and shell mold, and the solidification characteristics of molten metal, the thermal analysis of rarious molds and melt were performed. The structure of Al-Castings was a/so observed. Results obtained in this experiment were as follows : 1) The heating rate of the molds was increased in the order of green sand mold, $CO_2$ mold, dry sand mold and shell mold, On the other hand the solidification time of the melts was shortened in the order of dry sand mold castings, $CO_2$ mold castings, green sand mold castings and shell mold castings. 2) The arrest temperature period in the heating curve of the green sand mold was resulted from the eraporation of moisture contained in mold, which was transfered to the outer side of the mold. 3) The temperature fluctuation of the melt in the shell mold was considered to be resulted from the combution heat of resin contained in the mold. 4) The amounts of heat absorption of the molds were increased in the order of dry sand mold, $CO_2$ mold, green sand mold and shell mold. 5) The higher the solidification rate was, the longer was its shrinkage pipe and the finer its grain size.

  • PDF

The Analysis of Dynamic Pressure in the Molten Flux near the Meniscus during Mold Oscillation for the Continuous Casting of Steel (강의 연속주조시 Mold Oscillation에 따른 Flux층 내의 동적 압력변화 해석)

  • Park, Tae-Ho;Kim, Ji-Hun;Choi, Joo;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.24 no.1
    • /
    • pp.26-33
    • /
    • 2004
  • The pressure of the mold flux acting on the meniscus shell was investigated through the coupling analysis of heat transfer in the mold and fluid flow in the flux caused by the mold oscillation. Finite element method was employed to solve the conservation equation associated with appropriate boundary conditions. As reported by previous workers, the axial pressure is positive on the negative strip time and negative on the positive strip time. A maximum pressure is predicted toward the top of the meniscus shell which has the thin shell arid a maximum value is in proportion to the relative mold oscillation velocity. The relative mold oscillation velocity was changed by the effect of meniscus level fluctuation. Therefore the pressure of the mold flux acting on the meniscus shell was different each cycle of the mold oscillation due to the irregularity of relative mold oscillation velocity.

A Study on Development of the Flask-Molds for Manufacturing of the Elbow Shape Shell Molds (엘보어 쉘주형 금형 개발에 관한 연구)

  • Choi, Jae-Hoon;Park, Jong-yeon
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.45-49
    • /
    • 2013
  • Since the shell-molds are used to make casting the metal parts for the automobile industry, the quality may well be inconsistent with the lower productivity, increasing the cost of the end products. The primary elbow design shell molded steel castings being produced through extrusion process has $180^{\varnothing}$ O.D., $150^{\varnothing}$ I.D., 14mm thickness and 400mm length, while being processed onto the left side of the tubing. The primary cause for the poor processing is the uneven manual shell molding. If the manual shell molds should be produced to have even quality, they would not be processed for tube linking. The purpose of this study was to develop the flask-molds for manufacturing of the shell molds to ensure mass-production, consistent quality, ommission of processing and comfortable working environment. For this purpose, four flask-molds were produced and thereby, four shell molds were assembled. In particular, the shell molds for processing were formed of the fine coated sand to be blown. As a result, productivity increased about three times, while a consistent quality was ensured. Furthermore, the tubes could be linked with each other without being processed, while pallets could be stacked, stored, transported and managed more easily. In a nut-shell, the molding theory could be applied more effectively. However, it is conceived that this study should be followed up by future studies which will research into reliability and endurability of the end products.

  • PDF

A Study on Development of Safety Shell Molds for Precision Machining of Sand Mold Casting Product (사형제품 기계가공을 위한 안전금형 개발에 관한 연구)

  • Choi, Jae-Hoon;Nam, Seung-Done
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.179-184
    • /
    • 2013
  • An accident from machine work is often fatal to the worker. This accident is mostly preventable through perfect process jig. In case of this machine work, however, the disaster frequently occurred because of the design which is not considered the beginning of product design, post-process and mass process of production. As for sand casting method, this has the merits of the production; the product is easily produced by manual labor. On the other hand, this method has the demerits of a bigger dimensional error contrary to other mass process of production. When the sand casting product is in machine work, there are various problems such as unsafe fix and excessive cutting, product desorption and rapid life depreciation of equipment and tools. Considering the characteristics of sand casting method, it is accepted as difficulty to improve the problems. In this study, it suggests shell mold method for mold instead of the machine work after the sand casting of the circle shape container product. And the surface accomplishes the following average of surface roughness Ra$9.94{\mu}m$ of machine work with the casting of flask mold by shell mold method. In accordance with the simplification of processing process and reducing the average thickness variation by mass production of product with detailed appearance, it has a good influence on safety accident prevention caused by production and damaged product. It is confirmed that making higher degree of size precision of all machine work product is possible to increase the safety and productivity, reduce the processing process and improve environment.

Quantitative Prediction of Gas Evolved by Shell Core in Permanent Mold Casting of Aluminum Alloy (알루미늄합금 중력금형주조용 쉘중자 가스발생량의 정량적 예측)

  • Kim, Ki-Young;Yi, Min-Soo
    • Journal of Korea Foundry Society
    • /
    • v.18 no.5
    • /
    • pp.481-487
    • /
    • 1998
  • Shell sand is widely used to make a complex shape castings due to its good collapsibility. When molten metal is poured into the mold, various gases are generated by the thermal decomposition of binder in the shell core. Casting defects such as blow hole and blister come from these gases. If it is possible to predict the evolution of gas quantitatively, it may provide effective solutions for minimizing the casting defects. To examine the gas evolution by shell core quantitatively, casting experiment and calculation were carried out. Gas pressure and gas volume evolved by shell core were measured in the experiment, and temperature distribution in the shell core was obtained by heat transfer analysis. From the result above, prediction on the gas volume evolved during pouring was tried. As forming pressure of the shell core increased and forming temperature decreased, the gas evolution increased. There was a close relationship between the calculated gas volume evolved and the measured one.

  • PDF

Development of Injection Mold for Subminiature Lenses Using Shell Runners Containing Multiple Holes (다공성 박판형 러너를 사용한 초소형 렌즈 사출금형 개발)

  • Yoon, Seung Tak;Park, Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.961-968
    • /
    • 2015
  • This study aims to develop an efficient mold structure for the injection molding of a subminiature lens, using shell-type runners instead of traditional cylindrical runners. While the shell runner has the advantage of shorter cooling time due to its thinner geometry, this smaller thickness causes an increase in injection pressure. In this study, the design of the shell runner was modified to contain multiple holes for the purpose of reducing injection pressure. Numerical analyses were performed for shell runners of various hole-shapes, and the resulting filling and cooling characteristics were discussed; the rhombic hole showed the best result for both filling and cooling characteristics. Subsequently, injection molding experiments were performed using an injection mold fabricated based on the rhombic design. The lens parts were successfully molded with highly-reduced cycle time and without degradation of part quality.

A Study on the Joining of Different Al Alloys by Centrifugal Casting (원심주조를 이용한 2종 알루미늄의 접합에 대한 연구)

  • Jang, Young-Soo;Lee, Moon-Hyoung;Moon, Jun-Young;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.27 no.6
    • /
    • pp.237-242
    • /
    • 2007
  • To improve the quality of the product and the cost efficiency, the joining of A356 alloy to an Al-18wt%Si alloys has been performed by centrifugal casting. The influence of the mold preheating temperature, the pouring temperature and the rotational velocity of the mold on the microstructures of the shell in the centrifugal casting was investigated using the experimental and simulation methods. In the present study, the cellular automaton (CA) technique and the finite volume method (FVM) were adopted to simulate the evolution of the macro structures and to calculate the temperature profiles, respectively. The evolution of the microstructures was also simulated using a modified cellular automaton (MCA) model. The optimal rotational speed of the mold for obtaining the sound shape of the shell was estimated experimentally to be over 1200 rpm. For the uniform microstructure, the outer shell needs to be cast with higher preheated mold temperature and lower pouring temperature, and the melt was poured at lower temperature in the inner shell. In order to obtain the sound shape of the joining, the different materials were poured simultaneously.

The Effect of Casting Condition and Heat Treatment on the Mechanical Properties of AC4C Alloy Castings (AC4C 합금의 기계적 성질에 미치는 주조조건과 열처리의 영향에 관한 연구)

  • Kang, Hyo-Gyoung;Cheon, Byung-Wook;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.13 no.5
    • /
    • pp.450-461
    • /
    • 1993
  • AC4C alloy casts in the metallic mold, zircon sand mold, silica sand mold and shell mold with the pouring temperatures of 680, 710 and $740^{\circ}C$ have been investigated. The tensile strength, elongation and hardness of AC4C alloy castings have been influenced by the kind of molds used. The mechanical properties in zircon sand mold castings were greater than those in other sand mold castings, but were inferior to the properties in metallic mold castings. Eutectic Si particle size and DAS were increased in the order of metallic mold, ziron sand mold, silica sand mold and shell mold. Also, they were increased with the increase of pouring temperatures. DAS, eutectic Si particle size and grain size decreased with the increase of mechanical properties as the cooling rate increased. The eutectic Si particle size and DAS of AC4C alloy castings after T6 treatment were decreased in as-cast. The variation of eutectic Si particle size has been effected on the tensile strength, elongation and fractured surface.

  • PDF

Thermal Behavior Analysis in Continuous Bloom Casting Mold (Bloom용 연속주조 몰드의 열거동 해석)

  • 정영진;김성훈;김영모;강충길
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.319-325
    • /
    • 2004
  • Continuous casting machine has been experienced a rapid development to increase productivity with high casting speed and to meet consumer's strict demands for high quality. However, because most of defects and cracks are initially formed in mold and grown into surface cracks during the post process, more specific and clear investigations upon heat transfer mechanism between mold and solidified shell are necessarily needed. In this study heat transfer coefficients which shows the characteristic of heat transfer mechanism are calculated with temperatures measured in bloom mold using optimal algorithm, and thermal analysis are investigated using the calculated heat transfer coefficients. Finally uniformity of solidified shell is investigated for high carbon steel, 0.187%C from thermal analysis.

The deformation patterns of flange according to die geometry in the radial extrusion (레이디얼압출에서 금형구조에 따른 플렌지의 성형형태)

  • Ko, Byung-Do;Kang, Dong-myeung;Lee, Ha-Sung
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.7-10
    • /
    • 2008
  • Restriking method is to add to process in order to get the correct size and high precision accuracy of product which is formed in pre-process. This method is widely used at bending work and drawing work. Restriking die is particularly design and used as restriking process is performed. Therefore, production cost is increasing as one process or a two process are added. In this paper, punches and die block of square shell drawing die which could be performed drawing work and restriking process by using only one die are designed in order to solve these factors. The structure of sectional die which can integrate drawing die and restriking die was developed.

  • PDF