• 제목/요약/키워드: shell angle

검색결과 193건 처리시간 0.027초

사질토 지반에서 Shell 기초 거동에 대한 연구 (A Study on Shell Foundation Behaviour in Cohesionless Soil)

  • 김상환;이충환;최충식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1144-1154
    • /
    • 2008
  • In this paper, the behaviour of shell foundation was studied. In order to perform this study, three studies such as theoretical, numerical and experimental programs were performed. In the theoretical program, the general shallow foundation theories and failure mechanism developed by Terzaghi, Mayerhof and others were reviewed and compared. Based on the previous shallow foundation behaviour, the shell foundation theory was developed using the upper boundary theorem. In the numerical study, the 2 and 3 dimensional FEM simulations were carried out using an uncoupled-analysis approach. From the analysis results, the adequate depth of shell foundation was evaluated. It was also evaluated the bearing capacity according to the shell angle ($120^{\circ}$, $90^{\circ}$, $60^{\circ}$). In the experimental study, the laboratory model tests were carried out for five cases of different foundation shapes including the rectangular and circular foundation in order to verify the theoretical and nemerical study. According to the results of this study, the bearing capacity of shell foundation was theoretically about 15% larger than that of general foundation. However, in the model test, the bearing capacity of shell foundation was about 25 to 30% larger than that of general foundation. In the case of shell angle, the maximum bearing capacity of shell foundation shows when the shell angle of foundation was $60^{\circ}$. In addition, Even if the shell foundation has the various advantages compared with the general foundations as described above, the practical verifications in full scale size will be necessary to use in the field and will be helpful in the technical development of other special foundations.

  • PDF

불용 자원의 접촉면 마찰 특성 평가 (Evaluation of Interface Friction Characteristic using Waste Resource)

  • 이승은;장용채;존 바우더스
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1456-1462
    • /
    • 2008
  • This study conducted a direct shear test to evaluate friction properties on contact surface of waste resources including turban shell, gastropod shell and PET bottle film. The contact surface that was considered for computation of shear strength in contact surface were turban shell/turban shell, gastropod shell/gastropod shell, and PET bottle film/PET bottle film. As a result of test, friction angle was found to be $16.7^{\circ}$ for contact surface of turban shell/turban shell, $35.4^{\circ}$ for gastropod shell/gastropod shell, and about $11^{\circ}$ for PET bottle film/PET bottle film. Using the results, the author aims to provide a possibility for application of waste resource in the field.

  • PDF

Nonlinear dynamic buckling of laminated angle-ply composite spherical caps

  • Gupta, S.S.;Patel, B.P.;Ganapathi, M.
    • Structural Engineering and Mechanics
    • /
    • 제15권4호
    • /
    • pp.463-476
    • /
    • 2003
  • This paper deals with nonlinear asymmetric dynamic buckling of clamped laminated angle-ply composite spherical shells under suddenly applied pressure loads. The formulation is based on first-order shear deformation theory and Lagrange's equation of motion. The nonlinearity due to finite deformation of the shell considering von Karman's assumptions is included in the formulation. The buckling loads are obtained through dynamic response history using Newmark's numerical integration scheme coupled with a Newton-Raphson iteration technique. An axisymmetric curved shell element is used to investigate the dynamic characteristics of the spherical caps. The pressure value beyond which the maximum average displacement response shows significant growth rate in the time history of the shell structure is considered as critical dynamic load. Detailed numerical results are presented to highlight the influence of ply-angle, shell geometric parameter and asymmetric mode on the critical load of spherical caps.

사질토 지반에서 Shell 기초 거동에 대한 연구 (A Study on Shell Foundation Behaviour in Cohesionless Soil)

  • 김상환;정용수;고동필;강소라
    • 한국지반공학회논문집
    • /
    • 제24권7호
    • /
    • pp.51-60
    • /
    • 2008
  • 본 논문은 기초의 거동에 영향을 주는 여러 가지 인자 중 특히, 기초형상에 변화를 주었을 경우 기초의 거동에 초점을 두고 연구하였다. 시초형상으로는 시공성 및 경제성이 가장 우수하다고 판단되는 Shell기초 형태를 제시하였고 수치해석 및 실내모형시험을 실시하여 도출한 결과 값과 Terzaghi, Meyerhof등의 이론값을 비교 분석하였다. 그 결과, 일반기초에 비해 Shell 기초의 침하는 15%정도 크게 발생되는 것으로 나타났으나, 지지력은 $20%{\sim}25% 정도 향상되는 결과를 얻었다. 특히 Shell 기초 $60^{\circ}$인 경우 일반 기초에 비해 33%의 지지력이 향상되는 것을 알 수 있었으므로 연구된 기초형상이 실용화 되면 경제성과 안정성이 확보된 기초 설계기술에 공헌할 것으로 기대 된다.

조개껍질 혼합모래의 지반공학적 특성 (Geotechnicla Charateristics of Shell-Sand Mixtures)

  • 윤여원;윤길림;김재권;김승현;김근수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1005-1012
    • /
    • 2005
  • Shell-sand mixtures are commonly used for reclamation projects. This study presented the engineering properties of shell-sand mixtures. Shell shows higher specific gravities and less compressibilities than quartz sand. From large shear box tests, it can be seen that the shear strength increased with the increase of shell mixtures. At 30% shell mixtures showed about 6 increase in shear friction angle.

  • PDF

Modal Analysis of Conical Shell Filled with Fluid

  • Jhung, Myung-Jo;Jo, Jong-Chull;Jeong, Kyeong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1848-1862
    • /
    • 2006
  • As a basic study on the fluid-structure interaction of the shell structure, a theoretical formulation has been suggested on the free vibration of a thin-walled conical frustum shell filled with an ideal fluid, where the shell is assumed to be fixed at both ends. The motion of fluid coupled with the shell is determined by means of the velocity potential flow theory. In order to calculate the normalized natural frequencies that represent the fluid effect on a fluid-coupled system, finite element analyses for a fluid-filled conical frustum shell are carried out. Also, the effect of apex angle on the frequencies is investigated.

GSCAD를 이용한 Template 기능 개발 및 적용 (Development of GSCAD Template Rule for Hull Plate Forming)

  • 윤종성;박지현;명희건;사공계완
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2011년도 특별논문집
    • /
    • pp.32-35
    • /
    • 2011
  • Template has been widely used for hull forming process in most of shipyards. It is used to estimate the curvature of deformed shape in comparison with design shape. SHI (Samsung Heavy Industry) had used AutoKon system for ship manufacturing design in the past. The AutoKon used the global coordinate system of ship (frame, water line and so on) to create template data. It brought the mismatched angles between templates and a curved shell plate. The mismatched angle is measured by forming worker to place template on shell forming stage. However, the mismatched angle is difficult to place template with exactly required angle because the shell plates have various curvature and size. It causes incorrect shape of formed shell plates. The attached angle of template should be 90 degree to place template easily on forming shell plates. Currently, SHI has been applied GSCAD for ship manufacturing design process which is 3D solid modeling system. The GSCAD is the rule-based system which can automate 3D modeling and control the manufacturing data by rule. The rule can easily provide methods to create and automate template object with regular attached angle in comparison with AutoKon system. Therefore, SHI developed new template rule which it can automatically create template object with regular attached angle in GSCAD.

  • PDF

Application of FEM on first ply failure of composite hypar shells with various edge conditions

  • Ghosh, Arghya;Chakravorty, Dipankar
    • Steel and Composite Structures
    • /
    • 제32권4호
    • /
    • pp.423-441
    • /
    • 2019
  • This study aims to accurately predict the first ply failure loads of laminated composite hypar shell roofs with different boundary conditions. The geometrically nonlinear finite element method (FEM) is used to analyse different symmetric and anti-symmetric, cross and angle ply shells. The first ply failure loads are obtained through different well-established failure criteria including Puck's criterion along with the serviceability criterion of deflection. The close agreement of the published and present results for different validation problems proves the correctness of the finite element model used in the present study. The effects of edge conditions on first ply failure behavior are discussed critically from practical engineering point of view. Factor of safety values and failure zones are also reported to suggest design and non-destructive monitoring guidelines to practicing engineers. Apart from these, the present study indicates the rank wise relative performances of different shell options. The study establishes that the angle ply laminates in general perform better than the cross ply ones. Among the stacking sequences considered here, three layered symmetric angle ply laminates offer the highest first ply failure load. The probable failure zones on the different shell surfaces, identified in this paper, are the areas where non-destructive health monitoring may be restricted to. The contributions made through this paper are expected to serve as important design aids to engineers engaged in composite hypar shell design and construction.

Dynamic response of layered hyperbolic cooling tower considering the effects of support inclinations

  • Asadzadeh, Esmaeil;Alam, Mehtab;Asadzadeh, Sahebali
    • Structural Engineering and Mechanics
    • /
    • 제50권6호
    • /
    • pp.797-816
    • /
    • 2014
  • Cooling tower is analyzed as an assembly of layered nonlinear shell elements. Geometric representation of the shell is enabled through layered nonlinear shell elements to define the different layers of reinforcements and concrete by considering the material nonlinearity of each layer for the cooling tower shell. Modal analysis using Ritz vector analysis and nonlinear time history analysis by direct integration method have been carried out to study the effects of the inclination of the supporting columns of the cooling tower shell on its dynamic characteristics. The cooling tower is supported by I-type columns and ${\Lambda}$-type columns supports having the different inclination angles. Relevant comparisons of the dynamic response of the structural system at the base level (at the junction of the column and shell), throat level and at the top of the tower have been made. Dynamic response of the cooling tower is found to be significantly sensitive to the change of the inclination of the supporting columns. It is also found that the stiffness of the structure system increases with increase in inclination angle of the supporting columns, resulting in decrease of the period of the structural system. The participation of the stiffness of the tower in structural response of the cooling tower is fund to be dependent of the change in the inclination angle and even in the types of the supporting columns.

Ultimate bearing capacity of conical shell foundations

  • Colmenares, J.E.;Kang, So-Ra;Shin, Young-Jin;Shin, Jong-Ho
    • Structural Engineering and Mechanics
    • /
    • 제52권3호
    • /
    • pp.507-523
    • /
    • 2014
  • Shell foundations have been employed as an alternative for the conventional flat shallow foundations and have proven to provide economical advantage. They have shown considerably improved performance in terms of ultimate capacity and settlement characteristics. However, despite conical shell foundations are frequently used in industry, the theoretical solutions for bearing capacity of these footings are available for only triangular shell strip foundations. The benefits in design aspects can be achieved through theoretical solutions considering shell geometry. The engineering behavior of a conical shell foundation on mixed soils was investigated experimentally and theoretically in this study. The failure mechanism was obtained by conducting laboratory model tests. Based on that, the theoretical solution of bearing capacity was developed and validated with experimental results, in terms of the internal angle of the cone. In comparison to the circular flat foundation, the results show 15% increase of ultimate load and 51% decrease of settlement at an angle of intersection of $120^{\circ}$. Based on the results, the design chart of modified bearing capacity coefficients for conical shell foundation is proposed.