• Title/Summary/Keyword: sheet deposition

Search Result 288, Processing Time 0.025 seconds

A Study on the Properties of AZO Films Surface-annealed by RF Magnetron Sputtering and Electron Beam Radiation (전자빔 조사에 의해 표면열처리된 AZO 박막의 물성변화에 관한 연구)

  • Shin, Chang-Ho;Jeong, Cheol-Woo;Kim, Yu-Sung;Chae, Ju-Hyun;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.4
    • /
    • pp.205-209
    • /
    • 2010
  • Transparent and conductive AZO films were deposited on the glass by using radio frequency (RF) magnetron sputtering with intense electron radiation, simultaneously. After deposition, the effect of electron radiation energy on the optical and electrical properties of AZO was investigated. In XRD measurements, the films irradiated with intense electron beam show the larger grain size than that of the films prepared without electron radiation. Sheet resistance was also dependent on the electron radiation energy, while the optical transmittance in visible wavelength region was not affected seriously by electron radiation. X-.ray diffraction, UV-Vis spectrophotometer and four point probes were used to observe the crystallization, optical transmittance and sheet resistance, respectively.

Stduy on formation of W-silicide in the diped-phosphorus poly-Si/SiO$_{2}$/Si-substrate (인이 주입된 poly-Si/SiO$_{2}$/Si 기판에서 텅스텐 실리사이드의 형성에 관한연구)

  • 정회환;주병권;오명환;정관수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.3
    • /
    • pp.126-134
    • /
    • 1996
  • Tungsten silicide films were deposited on the phosphorus-doped poly-Si/SiO$_{2}$/Si-substrates by LPCVD (low pressue chemical vapor deposition). The formation and various properties of tungsten silicide processed by furnace annealing in N$_{2}$ ambient were evaluated by using XRD. AFM, 4-point probe and SEM. And the redistribution of phosphorus atoms has been observed by SIMS. The crystal structure of the as-deposited tungsten silicide films were transformed from the hexagonal to the tetragonal structure upon annealing at 550.deg. C. The surface roughness of tungsten polycide films were found to very smoothly upon annelaing at 850.deg. C and low phosphorus concentration in polysilicon layer. The sheet resistance of tungsten polycide low phosphorus concentration in polysilicon layer. The sheet resistance of tungsten polycide films are measured to be 2.4 .ohm./ㅁafter furnace annealing at 1100.deg. C, 30min. It was found that the sheet resistance of tungsten polycide films upon annealing above 1050.deg. C were independant on the phosphorus concentration of polysilicon layer and furnace annealing times. An out-diffusion of phosphorus impurity through tungsten silicide film after annealing in $O_{2}$ ambient revealed a remarkably low content of dopant by oxide capping.

  • PDF

Characteristics of copper/C films on PET substrate prepared by ECR-MOCVD at room temperature (상온 ECR-MOCVD에 의해 제조되는 Cu/C박막특성)

  • Lee, Joong-Kee;Jeon, Bup-Ju;Hyun, Jin;Byun, Dong-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.44-53
    • /
    • 2003
  • Cu/C films were prepared at room temperature under $Cu(hfac)_2-Ar-H_2$ atmosphere in order to obtain metallized polymer by using ECR-MOCVD(Electron Cyclotron Resonance Metal Organic Chemical Vapor Deposition) coupled with a DC bias system. The room temperature MOCVD on polymer substrate could be possible by collaboration of ECR and a DC bias. Structural analysis of the films by ECR was found that fine copper grains embedded in an amorphous polymer matrix with indistinctive interfacial layer. The increase in $H_2$ contents brought on copper-rich film formation with low electric resistance. On the other hand carbon-rich films with low sheet electric resistance were prepared in argon atmosphere. The electric sheet resistance of Cu/C films with good interfacial property were controlled at $10^8$~$10^0$ Ohm/sq. ranges by the $H_2$/Ar mole ratio and the shielding effectiveness of the film showed maximum up to 45dB in the our experimental range.

Effect of the Cu Bottom Layer on the Properties of Ga Doped ZnO Thin Films

  • Kim, Dae-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.185-187
    • /
    • 2012
  • Ga doped ZnO (GZO)/copper (Cu) bi-layered film was deposited on glass substrate by RF and DC magnetron sputtering and then the effect of the Cu bottom layer on the optical, electrical and structural properties of GZO films were considered. As-deposited 100 nm thick GZO films had an optical transmittance of 82% in the visible wavelength region and a sheet resistance of 4139 ${\Omega}/{\Box}$, while the GZO/Cu film had optical and electrical properties that were influenced by the Cu bottom layer. GZO films with 5 nm thick Cu film show the lower sheet resistance of 268 ${\Omega}/{\Box}$ and an optical transmittance of 65% due to increased optical absorption by the Cu metallic bottom layer. Based on the figure of merit, it can be concluded that the thin Cu bottom layer effectively increases the performance of GZO films as a transparent and conducting electrode without intentional substrate heating or a post deposition annealing process.

The Establishment of Bonding Conditions of Cu Using an Ultrasonic Metal Welder (초음파 금속 용착기를 이용한 Cu 박판의 용착성 실험)

  • Jang, Ho-Su;Park, Woo-Yeol;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.570-575
    • /
    • 2011
  • Ultrasonic metal welder is consisted of power supply, transducer, booster, and horn. Precise designing is required since each parts' shape, length and mass can affect driving frequency and vibration mode. This paper analyzed Cu sheet deposition characteristics using ultrasonic metal welder and tension tester. A horn suitable for 40,000Hz was attached to the ultrasonic metal welder in order to weld Cu plates. The Cu sheet welding was done with different amplitude, pressure, and welding time, and its maximum tension was measured with tension tester. Maximum tension of 153.87N was obtained when the pressure was 2.0bar, amplitude was 80%, and welding time was 0.30s. Therefore, excessive welding condition negatively influences maximum tension measurement result.

The Effect of Sheet Resistance of Polysilicon Resistor with Contact Implantation and Metal Deposition (contact 이온주입과 Metal 증착이 다결정 실리콘저항의 면저항에 미치는 영향)

  • 박중태;최민성;이문기;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.6
    • /
    • pp.969-974
    • /
    • 1987
  • High value sheet resistance (Rs, 350 \ulcorner/ -80 K \ulcorner/ ) borom implanted polysilicon resistors were fabricated under process condition compatible with bipolar integrated circuits fabrication. This paper includes the effect of contact ion implantation on Rs and the effect of electron gun(e-gun) deosition vs. non e-gun evaporated metal contacts on the Rs. From results, we observed that the contact ion implanted samples showed higher Rs value than those without contact ion implantation. Also, it was shown that there is noticeable amount of Rs degradation for e-gun samples, while sputtered samples expressed little Rs degradation after PtSi was formed.

  • PDF

Properties of indium tin oxide thin films annealed in vacuum (진공에서 열처리된 ITO 박막의 특성)

  • 이임연;이기암
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.3
    • /
    • pp.152-157
    • /
    • 2000
  • Post-deposition vacuum annealing effects in electron-bearn-evaporated indium tin oxide (ITO) films have been investigated by the change of transmittance, sheet resistance and crystalline structure with annealing temperature ( $200-335^{\circ}C$) and oxygen partial pressure ($1\times^10^{-5}-1$\times10^{-4} torr$) in air and vacuum. The sarnples were polycrystalline films with a preferred orientation in the (222) plan. High quality films with sheet resistance as low as 62 Q/O and transmittance over 99% (absentee layer at 500 nm) have been obtained by suitably controlling the vacuum annealing pararneters.neters.

  • PDF

The study on formation of platinum thin films for RTD temperature sensor (측온저항체 온도센서용 백금박막의 형성에 관한 연구)

  • 정귀상;노상수
    • Electrical & Electronic Materials
    • /
    • v.9 no.9
    • /
    • pp.911-917
    • /
    • 1996
  • Platinum thin films were deposited on Si-wafer by DC rnagnetron sputtering for RTD (resistance thermometer devices). We investigated the physical and electrical characteristics of these films under various conditions, the input power, working vacuum, temperature of substrate and also after annealing these films. The deposition rate was increased with increasing the input power but decreased with increasing Ar gas pressure. The resistivity and sheet resistivity were decreased with increasing the temperature of substrate and the annealing time at 1000.deg. C. At substrate temperature of >$300^{\circ}C$, input power of 7 w/cm$^{2}$, working vacuum of 5 mtorr and annealing conditions of 1000.deg. C and 240 min, we obtained 10.65.mu..ohm..cm, resistivity of Pt thin films and 3800-3900 ppm/.deg. C, TCR(temperature coefficient of resistance). These values are close to the bulk value. These results indicate that the Pt thin films deposited by DC magnetron sputtering have potentiality for the development of Pt RTD temperature sensor.

  • PDF

Organic Photovoltaic Devices on $HNO_3$-Treated Multilayer Graphene Electrodes

  • Jung, Yong Un;Na, Seok-In;Kim, Han-Ki;Kang, Seong Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.235-235
    • /
    • 2013
  • We reported on the characteristics of organic solar cells (OSCs) fabricated on $HNO_3$-treated multilayer graphene (MLG) transparent electrodes. MLG electrodes were prepared using a chemical vapor deposition and a multi-transfer process. Compared to organic solar cells (OSCs) on the ITO electrodes had a fill factor of 65.97%, and a power conversion efficiency (PCE) of 3.364%, OSCs on the MLG (three-layer graphene) electrodes with sheet resistance of $274{\pm}1{\Omega}$/square and transparency of 92.1% had a fill factor of 43.46%, and a power conversion efficiency (PCE) of 2.019%. However, OSCs on the HNO3-treated MLG electrodes with lower sheet resistance of $119{\pm}1{\Omega}$/square had a fill factor of 57.54%, and a PCE of 2.861%. The results would provide a promising method to improve the performance of large-area OSCs based on MLG electrodes.

  • PDF

Corrosion resistance of double Al-Mg coating films on steel sheet prepared by PVD method (PVD법에 의해 제작된 Al-Mg 이층 코팅막의 내식특성)

  • Im, Gyeong-Min;Lee, Seul-Gi;Jeong, Jae-In;Yang, Ji-Hun;Lee, Myeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.150-150
    • /
    • 2013
  • Al-Mg films were prepared onto steel sheet according to deposition condition by eco-friendly electron beam vacuum evaporation method. The influence of Al-Mg films on corrosion resistance was evaluated by salt spray test and electrochemical method etc.. From the experimented results, it was found that the Al-Mg films which showed good corrosion resistance tend to have fine structure with homogenious composition distribution. In addition, it was shown that the property of coating films can be improve by controlling thickness ratio and uniform distribution of intermetallic compounds in Al-Mg films.

  • PDF