• Title/Summary/Keyword: shearing effect

Search Result 210, Processing Time 0.026 seconds

Behavior of Rapidly Expansion Materials for Maintenance Railroad Bed Subjected to Cyclic Loading (반복하중을 받는 철도노반 보수용 급속 팽창재료의 거동)

  • Lee, Jundae;Shin, Eunchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.45-50
    • /
    • 2009
  • The differential settlement may be generated by the variation of stresses caused by the soft ground or ground water. The cracks are usually created when the structures are leaned or deformed due to the differential settlement. A grouting method has been mainly used till now to improve the bearing capacity of the ground when the foundation of the structure is deformed by differential settlements. However, when this method is used, it takes too long time to obtain the required strength and the period of the reinforcement effect is not long enough. The advantage of GPCON injection method is to have good mechanical properties and durability, and easy construction. In addition, the GPCON method rapidly fills up the void in soils by injecting some materials into underground and also obtain the increase of bearing and shearing forces due to the expansion. In this paper the restoration capability of the foundation settlement of railway and subway subjected to cyclic loading is analytically and experimentally evaluated using the high density rapidly expansion GPCON in order to investigate the types of deformations and vibrational characteristics.

  • PDF

The Effect of Reinforcing Soil Shear Strength by a Root System Developed from Direct Sticking of Salix gracilistyla Miq (삽목에 의한 갯버들 근계의 토양전단강도 보강효과)

  • 이춘석;임승빈
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.5
    • /
    • pp.1-10
    • /
    • 2003
  • The purpose of this study was to verify the shore margin protection effect of a root system developed from direct sticking of Salix gracilistyla Miq., focusing on the reinforcement of soil shear strength. The materials were 20cm long sticks whose average diameter and weight were 7.52mm and 14.58g respectively, and sandy loam(Sand 60.36%, Silt 28%, Clay 11.64%), whose maximum dry weight(${\gamma}$$_{dmax}$) was 1.59gf/㎤ at the water ratio( $W_{opt}$) 13.8%. The direct shearing test(KS F 2343) was applied to cylindric columms(diameter 132mm) of pure soil and two years old root reinforced soil. At each condition of vertical stress, 10N/$ extrm{cm}^2$, 14.41N/$\textrm{cm}^2$ and 18.82 N/$\textrm{cm}^2$, five soil+root columns were sheared. After shear tests, the root area ratio and soil moisture on the shear plane were measured. The results of this research were as follows: 1. The average of root area ratio was 1.86% and the soil moisture 14.67%. 2. Two years old root system was found to increase the soil shear strength of pure soil in terms of Cohesion(C) and Inner friction Angle($\phi$) as follows. 3. The relationship between root area ratio and the increased shear strength can be presented with the following equation, $\Delta$S ≒ 0.33ㆍ TrㆍAs/A $\Delta$S : Increased Shear Strength Tr : Average Tension Strength of Root, Ar/A : Root Area Ratioioage Tension Strength of Root, Ar/A : Root Area Ratio

The Effect of Displacement Rate on Shear Characteristics of Geotextile-involved Ceosynthetic Interfaces (지오텍스타일이 포함된 토목섬유 경계면의 전단특성에 대한 변위속도 효과)

  • 김진만
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.173-180
    • /
    • 2003
  • In spite of its potential importance in the assessment of geosynthetic-related dynamic problems, no serious attempt has yet been made to investigate a probable dependence of dynamic friction resistance of the geosynthetic interface on shear displacement rate. Hence, an experimental study of geosynthetics was carried out on a shaking table, and the relationship between dynamic friction resistance and shear displacement rate of geosynthetic interfaces was investigated. A cyclic, displacement rate-controlled experimental setup was used. The subsequent multiple rate tests showed that interfaces that involve geotextiles have such unique shearing characteristics that shear strengths tend to increase with displacement rate. In contrast, once submerged with water, the shear strength appears to be no longer dependent on the displacement rate, partly due to lubrication effect of water trapped inside the interface. The results of the experimental study can be used in the seismic safety assessment of a landfill cover and slope where the geosynthetic materials are exposed to a relatively low normal stress.

Effect of thermal-induced microcracks on the failure mechanism of rock specimens

  • Khodayar, Amin;Nejati, Hamid Reza
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.93-100
    • /
    • 2018
  • It is seldom possible that geotechnical materials like rocks and concretes found without joints, cracks, or discontinuities. Thereby, the impact of micro-cracks on the mechanical properties of them is to be considered. In the present study, the effect of micro-crack on the failure mechanism of rock specimens under uniaxial compression was investigated experimentally. For this purpose, thermal stress was used to induce micro-cracks in the specimens. Several cylindrical and disk shape specimens were drilled from granite collected from Zanjan granite mine, Iran. Some of the prepared specimens were kept in room temperature and the others were heated by a laboratory furnace to different temperature levels (200, 400, 600, 800 and 1000 degree Celsius). During the experimental tests, Acoustic Emission (AE) sensors were used to monitor specimen failure at the different loading sequences. Also, Scanning Electron Microscope (SEM) was used to distinguish the induced micro-crack by heating in the specimens. The fractographic analysis revealed that the thin sections heated to $800^{\circ}C$ and $1000^{\circ}C$ contain some induced micro-fractures, but in the thin sections heated to $200^{\circ}C$, $400^{\circ}C$ and $600^{\circ}C$ have not been observed any micro-fracture. In the next, a comprehensive experimental investigation was made to evaluate mechanical properties of heated and unheated specimens. Results of experimental tests showed that induced micro-cracks significantly influence on the failure mode of specimens. The specimens kept at room temperature failed in the splitting mode, while the failure mode of specimens heated to $800^{\circ}C$ are shearing and the specimens heated to $1000^{\circ}C$ failed in the spalling mode. On the basis of AE monitoring, it is found that with increasing of the micro-crack density, the ratio of the number of shear cracks to the number of tensile cracks increases, under loading sequences.

Seismic performance of precast joint in assembled monolithic station: effect of assembled seam shape and position

  • Liu, Hongtao;Du, Xiuli
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.611-621
    • /
    • 2019
  • Precast concrete structure has many advantages, but the assembled seam will affect potentially the overall seismic performance of structure. Based on the sidewall joint located in the bottom of assembled monolithic subway station, the main objectives of this study are, on one hand to present an experimental campaign on the seismic behavior of precast sidewall joint (PWJ) and cast-in-place sidewall joint (CWJ) subjected to low-cycle repeated loading, and on the other hand to explore the effect of shape and position of assembled seam on load carrying capacity and crack width of precast sidewall joint. Two full-scale specimens were designed and tested. The important index of failure pattern, loading carrying capacity, deformation performance and crack width were evaluated and compared. Based on the test results, a series of different height and variably-shape of assembled seam of precast sidewall joint were considered. The test and numerical investigations indicate that, (1) the carrying capacity and deformation capacity of precast sidewall and cast-in-place sidewall were very similar, but the crack failure pattern, bending deformation and shearing deformation in the plastic hinge zone were different obviously; (2) the influence of the assembled seam should be considered when precast underground structures located in the aquifer water-bearing stratum; (3) the optimal assembled seam shape and position can be suggested for the design of precast underground concrete structures according to the analysis results.

Effect of Glucose on Swarming Motility of Paenibacillus sp. CK214 (Paenibacillus sp. CK214의 swarming 운동성에 미치는 glucose의 영향)

  • Kang, Sung Wan;Yoo, Ah Young;Kang, Ho Young
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.299-305
    • /
    • 2013
  • Paenibacillus is a gram-positive, spore-forming aerobes that was previously classified as a Bacillus species. Paenibacillus sp. CK214 was highly motile on LB agar plates and showed typical colonial morphology of Paenibacillus. However, its motility was defective in the absence of glucose. Electron microscopic observation revealed that the cells of CK214 cultured on LB agar plates were peritrichously flagellated but not flagellated in the presence of glucose. Flagellar filaments were purified by centrifugation after shearing off from the CK214 cells with vigorous pipetting. The purified protein was composed of a single flagellin with an apparent molecular size of 29 kDa. Recognition of the protein by anti-Edwardsiella tarda flagellin protein antibody demonstrates that the protein is a flagellin protein. A decreased level of flagellin protein was detected in CK214 cells grown under glucose-supplemented media.

Behaviors of concrete filled square steel tubes confined by carbon fiber sheets (CFS) under compression and cyclic loads

  • Park, Jai Woo;Hong, Young Kyun;Choi, Sung Mo
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.187-205
    • /
    • 2010
  • The existing CFT columns present the deterioration in confining effect after the yield of steel tube, local buckling and the deterioration in load capacity. If lateral load such as earthquake load is applied to CFT columns, strong shearing force and moment are generated at the lower part of the columns and local buckling appears at the column. In this study, axial compression test and beam-column test were conducted for existing CFT square column specimens and those reinforced with carbon fiber sheets (CFS). The variables for axial compression test were width-thickness ratio and the number of CFS layers and those for beamcolumn test were concrete strength and the number of CFS layers. The results of the compression test showed that local buckling was delayed and maximum load capacity improved slightly as the number of layers increased. The specimens' ductility capacity improved due to the additional confinement by carbon fiber sheets which delayed local buckling. In the beam-column test, maximum load capacity improved slightly as the number of CFS layers increased. However, ductility capacity improved greatly as the increased number of CFS layers delayed the local buckling at the lower part of the columns. It was observed that the CFT structure reinforced with carbon fiber sheets controlled the local buckling at columns and thus improved seismic performance. Consequently, it was deduced that the confinement of CFT columns by carbon fiber sheets suggested in this study would be widely used for reinforcing CFT columns.

Effect of Cordyceps militaris with probiotics supplement on growth performance, meat quality characteristics, storage characteristics and cordycepin content of the breast meat in broilers

  • An, Jae Woo;Lee, Ji Hwan;Oh, Han Jin;Kim, Yong Ju;Chang, Se Yeon;Go, Young Bin;Song, Dong Cheol;Cho, Hyun Ah;Cho, Jin Ho
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.423-432
    • /
    • 2021
  • This experiment was conducted to investigate the effect of Cordyceps militaris with probiotics (CMP) supplementation on the growth performance, meat quality and storage characteristics, and cordycepin content in the meat. Sixty one-day-old broilers (Ross 308) were allotted to two treatment groups of 30 each. In addition, six broilers were randomly assigned to a cage in the two treatment groups. The two dietary treatments were as follows: Control (CON) and basal diet + 0.5% of CMP. Body weight and feed intake were measured on the 1st, 14th, and 28th days from the start of the experiment. On days 1 - 14, the supplementation of CMP improved (p < 0.05) the body weight gain (BWG) and feed conversion ratio (FCR). Additionally, the feed intake (FI) and FCR scores in the CMP groups improved (p < 0.01) compared to the CON during the entire period. For the meat quality characteristics, water holding capacity (WHC), cooking loss (CL), redness (a*) in meat color value, and shearing force (SF) for the CMP group were improved (p < 0.01) compared to the CON group. For the meat storage characteristics, pH and thiobarbituric acid reactive substances (TBARS) were improved (p < 0.01) when the broilers were fed CMP compared to the CON group. Broilers fed CMP had a higher (p < 0.01) cordycepin content in the meat compared to the CON group. In conclusion, CMP improves the growth performance and meat quality of broilers.

Bearing Capacity Analyses of Shallow Foundations in Reinforced Slopes

  • Kim, Hong-Taek;Choi, In-Sik;Sim, Young-Jong
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.127-148
    • /
    • 1996
  • Recently, foundations of heavy structures such as bridge abutments have been built on slopes or near the crest of slopes at an increasing rate. Because the bearing capacity of such foundations is considerably lower than the bearing capacity of the same soil on a level ground, deep footings such as piles and caissons are often used. However, the costs of such methods are generally very high. One of the new techniques to overcome the problem is to place reinforcing members such as geosynthetics or metal strips horizontally at some depths beneath the footings. Rational methods of analysis to predict the bearing capacity of footings in reinforced slopes are therefore needed. This paper proposes an analytical method for estimating the increase in bearing capacity gained from the included horizontal strips or ties of tensile reinforcing in the foundation soil below the footing built near the crest of a slope. A failure mechanism, including the concept of'wide slab effect', adopted in the present study for analyzing the bearing capacity of foundations in reinforced slopes, is established through the observed model test behaviors described by Binquet SE Lee and Huang et al, and the Boussinesq solutions. The analytical results are then compared with the experimental data described in the paper by Huang et al. Also in order to properly evaluate the soil reinforcement interaction, typical pullout test values of the apparent friction coefficient, which usually vary with depths owing to both the increase of the shearing volume and the increase in local stress caused by soil dilatancy, are analyzed and related functionally. Furthermore, analytical parametric studies are carried out to investigate the effect and significance of various pertinent parameters associated with design of reinforced slope foundations. Keywords : Bearing capacity, Reinforced slope, Slab effect, Friction coefficient.

  • PDF

Quality Characteristics of Low-Salted Yacon Pickles with Leaf-mustard and Pepper (갓과 고추를 첨가한 저염 야콘 피클의 품질 특성)

  • Shim, Ki Hoon;Choi, Ok Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.545-552
    • /
    • 2012
  • To improve a low-salted yacon pickle, the change of quality characteristics during the storage of yacon pickles were investigated at $18^{\circ}C$ for 50 days using two-way ANOVA. One factor that was added was the leaf-mustard and pepper (A), the other was storage time (B). The leaf-mustard and pepper were added to increase the yacon pickle's taste, flavor, and properties. The sugar content, total acidity and salinity were significant for factor A and B. With the interaction effect of the two factors, yacon pickles increased as storage time increased. The L value was not significant for factor A but significant for factor B. The a and b values were significant for the two factors. All Hunter's color value had the interaction effect. The shearing force was not significant for each factor, and yacon pickles did not show a softening effect. In the results of the sensory evaluation, color, taste, and overall preference were significant for factor A and B, yet the flavor was only significant for factor B. The texture was not significant at all. In the overall preference, yacon pickles were higher at 30 and 40 days and also, had the interaction effect. Yacon pickles were not above the 3.0% of salinity.