DOI QR코드

DOI QR Code

Effect of Glucose on Swarming Motility of Paenibacillus sp. CK214

Paenibacillus sp. CK214의 swarming 운동성에 미치는 glucose의 영향

  • Kang, Sung Wan (Department of Microbiology, Pusan National University) ;
  • Yoo, Ah Young (Department of Microbiology, Pusan National University) ;
  • Kang, Ho Young (Department of Microbiology, Pusan National University)
  • 강성완 (부산대학교 생명과학부 미생물학과) ;
  • 유아영 (부산대학교 생명과학부 미생물학과) ;
  • 강호영 (부산대학교 생명과학부 미생물학과)
  • Received : 2013.02.15
  • Accepted : 2013.02.18
  • Published : 2013.02.28

Abstract

Paenibacillus is a gram-positive, spore-forming aerobes that was previously classified as a Bacillus species. Paenibacillus sp. CK214 was highly motile on LB agar plates and showed typical colonial morphology of Paenibacillus. However, its motility was defective in the absence of glucose. Electron microscopic observation revealed that the cells of CK214 cultured on LB agar plates were peritrichously flagellated but not flagellated in the presence of glucose. Flagellar filaments were purified by centrifugation after shearing off from the CK214 cells with vigorous pipetting. The purified protein was composed of a single flagellin with an apparent molecular size of 29 kDa. Recognition of the protein by anti-Edwardsiella tarda flagellin protein antibody demonstrates that the protein is a flagellin protein. A decreased level of flagellin protein was detected in CK214 cells grown under glucose-supplemented media.

Paenibacillus는 호기성의 내생포자를 형성하는 그람양성균으로써 이전에는 Bacillus로 분류되었다. Paenibacillus sp. CK214 균주는 LB agar 평판배지에서 높은 swarming 운동 능력을 가지고 Paenibacillus 특유의 집락 형태를 나타내었지만 glucose가 첨가된 평판배지에서는 운동 능력을 상실하였다. 투과전자현미경(TEM)을 이용하여 glucose 조건에 따른 CK214 균주의 편모를 관찰하면 LB agar 평판배지에서 배양한 CK214 균주는 주모성의 편모를 가지는 반면 glucose를 첨가한 평판배지에서 배양한 CK214 균주의 경우 주모성 편모가 나타나지 않는 것을 확인할 수 있었다. 물리적 충격과 원심분리를 통해 분리한 CK214 균주의 filament 구성 단백질을 SDS-PAGE를 통해 확인하였으며, 약 29 kDa 크기의 단일 단백질 밴드가 나타났다. Edwardsiella tarda 균주의 flagellin 단백질에 특이적인 항체를 이용한 immunoblotting 수행 결과, 이 단일 단백질 밴드는 flagellin 단백질임이 확인되었다. Glucose조건에 따른 CK214 균주의 flagellin 단백질의 발현을 단백질 수준에서 관찰한 결과, glucose가 첨가된 조건에서 생장한 CK214 균주에서의 flagellin 단백질 발현이 glucose가 없는 조건일 때에 비해 감소하는 것을 확인할 수 있었다.

Keywords

References

  1. Aldridge, P. and Hughes, K. T. 2002. Regulation of flagellar assembly. Curr Opin Microbiol 5, 160-5. https://doi.org/10.1016/S1369-5274(02)00302-8
  2. Ash, C., Priest, F. G. and Collins, M. D. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64, 253-260.
  3. Bertani, G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62, 293-300.
  4. Deutscher, J. 2008. The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol 11, 87-93. https://doi.org/10.1016/j.mib.2008.02.007
  5. Eberl, L., Molin, S. and Givskov, M. 1999. Surface motility of Serratia liquefaciens MG1. J Bacteriol 181, 1703-1712.
  6. Fraser, G. M. and Hughes, C. 1999. Swarming motility. Curr Opin Microbiol 2, 630-635. https://doi.org/10.1016/S1369-5274(99)00033-8
  7. Fujihara, M., Maeda, K., Sasamori, E., Matsushita, M. and Harasawa, R. 2009. Effects of chelating reagents on colonial appearance of Paenibacillus alvei isolated from canine oral cavity. J Vet Med Sci 71, 147-153. https://doi.org/10.1292/jvms.71.147
  8. Gorke, B. and Stulke, J. 2008. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6, 613-624. https://doi.org/10.1038/nrmicro1932
  9. Harshey, R. M. 2003. Bacterial motility on a surface: many ways to a common goal. Ann Rev Microbiol 57, 249-273. https://doi.org/10.1146/annurev.micro.57.030502.091014
  10. Harshey, R. M. 1994. Bees aren't the only ones: swarming in gram-negative bacteria. Mol Microbiol 13, 389-394. https://doi.org/10.1111/j.1365-2958.1994.tb00433.x
  11. Harshey, R. M. and Matsuyama, T. 1994. Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface- induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci USA 91, 8631-8635. https://doi.org/10.1073/pnas.91.18.8631
  12. Ingham, C. J. and Ben Jacob, E. 2008. Swarming and complex pattern formation in Paenibacillus vortex studied by imaging and tracking cells. BMC Microbiol 8, 36. https://doi.org/10.1186/1471-2180-8-36
  13. Jones, B. E., Dossonnet, V., Kuster, E., Hillen, W., Deutscher, J. and Klevit, R. E. 1997. Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr. J Biol Chem 272, 26530-26535. https://doi.org/10.1074/jbc.272.42.26530
  14. Kang, S. W., Yoo, A. H., Yu, J. E. and Kang, H. Y. 2012. Characterization and identification of an agar-degrading motile bacteria strain. J Life Sci 22, 259-265. https://doi.org/10.5352/JLS.2012.22.2.259
  15. Ko, C. H., Tsai, C. H., Lin, P. H., Chang, K. C., Tu, J., Wang, Y. N. and Yang, C. Y. 2010. Characterization and pulp refining activity of a Paenibacillus campinasensis cellulase expressed in Escherichia coli. Bioresour Technol 101, 7882-7888. https://doi.org/10.1016/j.biortech.2010.05.043
  16. Kohler, T., Curty, L. K., Barja, F., van Delden, C. and Pechere, J. C. 2000. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182, 5990-5996. https://doi.org/10.1128/JB.182.21.5990-5996.2000
  17. Madigan, T., Martinko, J. M., Dunlap, P. V. and Clark, D. P. 2009. Biology of Microorganisms, 10th ed. Pearson Benjamin Cummings, San Francisco.
  18. Rather, P. N. 2005. Swarmer cell differentiation in Proteus mirabilis. Environ Microbiol 7, 1065-1073. https://doi.org/10.1111/j.1462-2920.2005.00806.x
  19. Sambrook, J. and Russel, D. W. 2001. Molecular Cloning a laboratory manual, 3rd eds. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  20. Seidl, K., Muller, S., Francois, P., Kriebitzsch, C., Schrenzel, J., Engelmann, S., Bischoff, M. and Berger-Bachi, B. 2009. Effect of a glucose impulse on the CcpA regulon in Staphylococcus aureus. BMC Microbiol 9, 95. https://doi.org/10.1186/1471-2180-9-95
  21. Sudo, M., Sakka, M., Kimura, T., Ratanakhanokchai, K. and Sakka, K. 2010. Characterization of Paenibacillus curdlanolyticus intracellular xylanase Xyn10B encoded by the xyn10B gene. Biosci Biotechnol Biochem 74, 58-60.
  22. Tcherpakov, M., Ben-Jacob, E. and Gutnick, D. L. 1999. Paenibacillus dendritiformis sp. nov., proposal for a new pattern- forming species and its localization within a phylogenetic cluster. Int J Syst Bacteriol 1, 239-246.
  23. Titgemeyer, F. and Hillen, W. 2002. Global control of sugar metabolism: a gram-positive solution. Antonie Van Leeuwenhoek 82, 59-71. https://doi.org/10.1023/A:1020628909429
  24. Towbin, H., Staehelin, T. and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76, 4350-4354. https://doi.org/10.1073/pnas.76.9.4350
  25. Warner, J. B. and Lolkema, J. S. 2003. CcpA-dependent carbon catabolite repression in bacteria. Microbiol Mol Biol Rev 67, 475-490. https://doi.org/10.1128/MMBR.67.4.475-490.2003

Cited by

  1. Glucose induces delocalization of a flagellar biosynthesis protein from the flagellated pole vol.101, pp.5, 2016, https://doi.org/10.1111/mmi.13424