• Title/Summary/Keyword: shear-thinning fluid flow

Search Result 41, Processing Time 0.024 seconds

Flow Properties of Doenjang (시판된장의 리올로지(Rheology) 특성에 관한 연구)

  • 양신철;김선화
    • Journal of Applied Tourism Food and Beverage Management and Research
    • /
    • v.13 no.1
    • /
    • pp.55-68
    • /
    • 2002
  • Flow properties of doenjang samples at various total solid contents (30, 32, 34, 36, 38, 40%) were evaluated in this study. Flow properties of doenjang samples was determined by using Haake concentric cylinderical viscometer and Instron testing machine with capillary extrusion viscometer, and consistency index(K), and flow behavior index(n) was also determined from power models, and yield stress was derived form Casson models and vanes methods. Doenjang samples showed shear-thinning (pseudoplastic) fluid with small magnitude of flow behavior index(n) (n=0.30-0.55). Casson yield stress was from 2.11 to 64.02(Pa). Vane yield stress was more effective than casson yield stress in property of reactivation. Apparent viscosity was decreased with the increase in temperature and activation energy was in the range of 6.58 to 10.70 kJ/mole. From the capillary extrusion method, K and n was increased with the increase in solid content with good correlation with. The result revealed that capillary extrusion method is useful for measuring the flow properties of doenjang.

  • PDF

PERISTALTIC PUMPING OF AN ELLIS FLUID IN AN INCLINED ASYMMETRIC CHANNEL

  • A. SMALL;P. NAGARANI;M. NARAHARI
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.1
    • /
    • pp.51-70
    • /
    • 2023
  • The flow of an incompressible Ellis fluid in an inclined asymmetric channel, driven by peristaltic waves was studied under low Reynolds number and long wavelength assumptions. The wave on each side of the channel are assumed to be an infinite train of sinusoidal waves, both having the same constant wave speed and wavelength however, they vary in wave amplitude, channel half width and phase angle. We derived expressions for the axial and transverse velocities, volume flow rate, pressure rise per unit wavelength and streamlines. The effects of varying the wave amplitudes, the phase angle, the channel width, the angle of inclination of the channel as well as the fluid parameters on the flow were analyzed. Trapping conditions were determined and the presence of reflux highlighted using the streamlines for the necessary channel and fluid conditions. By varying the fluid parameters, changes in the fluid that deviated from the Newtonian case resulted in a reduction in the axial velocity in the neighborhood of the center of the channel and a simultaneous increase in the velocity at the periphery of the channel. A nonlinear relation was observed with the pressure rise and the volume flow rate. This nonlinear relation is more pronounced with an increase in the absolute value of the volume flow rate. For Newtonian fluids a linear relation exists between these two variables. The fluid parameters had little effects on the streamlines. However, variations of the wave amplitudes, volume flow, channel width and phase angle had greater effects on the streamlines and hence the trapped region.

Measuring rheological properties using a slotted plate device

  • Kee, Daniel-De;Kim, Young-Dae;Nguyen, Q. Dzuy
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.2
    • /
    • pp.75-80
    • /
    • 2007
  • The slotted plate technique has previously been shown to be a successful method for directly measuring the static yield stress of suspensions. In this study, we further establish the usefulness of the slotted plate device as a rheometer especially at low shear rates, taking advantage of the extremely low speeds of the slotted plate technique. Newtonian fluids, a shear thinning fluid, and yield stress fluids were tested using the slotted plate device and the results were compared with those from a commercial rheometer using different standard flow geometries. The relationship between the stress on the plate and the viscosity for the slotted plate device obtained by dimensional analysis (drag) predicts a linear relationship between the force at the plate and the plate speed, consistent with the experimental data. The slotted plate device can measure viscosities at very low shear rates. The apparent viscosity - shear-rate data obtained from the slotted plate device are complementary to those obtained using a commercial rheometer. That is : the slotted plate can measure viscosity in the shear rate range $10^{-7}<\dot{\gamma}<10^{-3}\;s^{-1}$, while the commercial rheometer measures viscosity at shear rates higher than $10^{-3}\;s^{-1}$.

Convective Heat Transfer of a Paraffin Slurry in a Drag Reducing Carrier Fluid (유동저항 감소유체를 운반유체로 한 파라핀 슬러리의 대류 열전달에 관한 연구)

  • 정동주;최은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1275-1281
    • /
    • 2001
  • Aqueous polymer solutions are known to have small pressure reduction. Paraffin slurries are known to have high thermal capacity. Paraffin particles are mixed into an aqueous polymer solution to make a new heat transfer fluid having high thermal capacity but low pressure reduction. The heat transfer characteristics of the new slurry was tested in a circular tube having a constant heat transfer boundary condition. The new slurry was found to have high Nusselt numbers as well as high thermal capacity and low pressure reduction in the laminar flow. The trends of the Nusselt numbers along the heating test section were studied for various heating conditions.

  • PDF

Rheological Properties of Exopolysaccharide p-KG03 Produced by Marine Microalgae Gyrodinium impudicum strain KG03

  • Im, Jeong-Han;Kim, Seong-Jin;Park, Gyu-Jin;An, Se-Hun;Lee, Hyeon-Sang;Lee, Hong-Geum
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.611-614
    • /
    • 2003
  • The rheological properties of exopolysaccharide, p-KG03, produced by marine microalgae Gyrodinium impudicum strain KG03 had been studied. The intrinsic viscosity of this p-KG03 was calculated to 65.22 and 50.75 $d{\ell}/g$ using Huggins and Kramer equations (xanthan gum 24.41 and 24.03). Aqueous dispersions at p-KG03 concentrations ranging from 0.1 to 1.0 % (w/w) showed marked shear-thinning properties as Power-Law behavior. In aqueous dispersions of p-KG03 1.0 %, consistency index (K) and flow behavior index (n) were 2,172 and 0.52. The apparent viscosity and the influence of shear rate on different conditions as p-KG03 concentrations, pH, NaCl, $CaCl_2$ and temperature in aqueous solutions were measured. And p-KG03 had mixed with aqueous solutions of xanthan gum and gellan gum, and invested the change of mixed aqueous solution behavior.

  • PDF

Rheological Characteristics of Fine-Grained Soil with Sand Content (세립토의 모래함량에 따른 유변학적 특성 분석)

  • Kang, Hyo-Sub;Kim, Yun-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1897-1905
    • /
    • 2013
  • Rheological properties such as yield stress and viscosity is the main parameters to determine the fluidity of the debris flow. In this study, several series of rheometer tests were performed to investigate rheological properties of fine-grained soil samples with various sand contents and various liquidity indices. Test results indicated that the general shape of the flow curves for fine-grained soils had characteristics of a shear thinning fluid, with a decrease in viscosity as shear rate increases. The yield stress and viscosity of fine-grained soil samples with same sand content gradually decreased as the liquidity index increased. At the same liquidity index, yield stress and viscosity of fine-grained soil increased with an increase in sand content. The yield stress and viscosity of fine-grained soil greatly decreased with a slight increase in water content. Also, the yield stress and viscosity tend to increase with increasing concentration by volume($C_v$) of the fluid matrix. The values of the four coefficients ${\alpha}_1$, ${\alpha}_2$, ${\beta}_1$, and ${\beta}_2$ were obtained by regression analysis for each fine-grained soil.

Study of Flow Characteristics of Gel Propellant through Various Injector Geometries (인젝터 형상 변화에 따른 Gel 추진제의 유동 특성 연구)

  • Oh, Jeong-Su;Jeon, Doo-Sung;Choi, Sang-Tae;Kim, Deok-Yoon;Choi, Yang-Ho;Lee, Jeong-Hyuk;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.300-303
    • /
    • 2010
  • The present study investigates the flow characteristics of simulant gel propellant(carbopol 0.5%wt) in a variety of injectors. Rheological data for gel propellant has been measured and injector flow characteristics for plain-orifice, chamfered-orifice and venturi type injector have been numerically analyzed. The apparent viscosity of plain-orifice and chamfered-orifice have tendency to increase along axial direction, whereas for venturi type injector, low viscosity has been achieved in the injector flow. This phenomenon was clearly pronounced as Reynolds number is increased.

  • PDF

The Rheological Characteristics of Wyoming Bentonite: Role of Salinity (와이오밍 벤토나이트의 유변학적 특성: 염분농도의 역할)

  • Jeong, Sueng-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.81-92
    • /
    • 2011
  • The rheological properties of Wyoming bentonites are strongly influenced by the size of particles, cation exchangeable capacity, arrangement and morphology of clay mineral. This paper presents the results of rheological investigations on the Wyoming bentonites aqueous dispersions: two types of particle flocculation were considered. For the Wyoming bentonite, 0g/L and 30g/L NaCl equivalent salinity were added in fresh and salt water to examine the rheological behavior. This paper examined the general rheological characteristics, compatibility of rheological models and correlation between soil structure and change in rheological properties of Wyoming bentonite caused by increasing salinity. From flow curves of bentonites hydrated with fresh water and salt water, the observed general flow behavior is very close to shear thinning with yield stress (or ideal Bingham fluid with yield stress and plastic viscosity). However, the change of shear stress at the same shear rate is clear, particularly for lower shear rate. Well-known rheological models are used to fit the data. There is a good agreement between rheological model and data: Carreau, Herschel-Bulkley and power-law for S=0g/L and bilinear, Herschel-Bulkley and power-law for S=30g/L. It may be due to the fact that the internal structural bonding (strong modification of particle-particle interactions from edge-to-edge and/or edge-to-face to face-to-face) in soil matrix is affected from the evolution of rheological properties with different salinities.

Rheological Characteristics of Nitromethane Gel Fuel with Nano/Micro Size of SiO2 Gellant (SiO2계열 젤화제 입자크기에 따른 니트로메탄 젤 추진제의 유변학적 특성 연구)

  • Jang, Jinwu;Kim, Sijin;Han, Seongjoo;Kim, Jinkon;Moon, Heejang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.456-461
    • /
    • 2017
  • In this study, the rheological properties of nitromethane gel propellants on nano/micron sized gelling agent are investigated. Silicon dioxide is used as the gellant with 5 wt%, 6.5 wt% and 8 wt% concentration, respectively, where the measurements are conducted under steady-state shear flow conditions using a rotational rheometer. The nitromethane/silicon dioxide gel showed non-Newtonian flow behavior for the entire experimental shear rate ranges. The gel fuels with nano-sized gellant had a slightly higher viscosity than the gel fuels with micron-sized one for low shear rate range. Additionally, it was found that Herschel-Bulkley model can hardly describe the rheological behavior of nitromethane gel propellant, but the NM model(by Teipel and Forter-Barth) is better suited to explain the rheological behavior of nitromethane gel propellant.

  • PDF

Three-dimensional numerical simulation for the prediction of product shape in sheet casting process

  • Chae, Kyung-Sun;Lee, Mi-Hye;Lee, Seong-Jae;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.2
    • /
    • pp.107-117
    • /
    • 2000
  • Prediction of the product shape in sheet casting process is performed from the numerical simulation. A three-dimensional finite element method is used to investigate the flow behavior and to examine the effects of processing conditions on the sheet produced. Effects of inertia, gravity, surface tension and non-Newtonian viscosity on the thickness profile of the sheet are considered since the edge bead and the flow patterns in the chill roll region have great influence on the quality of the products. In the numerical simulation with free surface flows, the spine method is adopted to update the free surface, and the force-free boundary condition is imposed along the take-up plane to avoid severe singularity problems existing at the take-up plane. From the numerical results of steady isothermal flows of a generalized Newtonian fluid, it is shown that the draw ratio plays a major role in predicting the shape of the final sheet produced and the surface tension has considerable effect on the bead thickness ratio and the bead width fraction, while shear-thinning and/or tension-thickening viscosity affect the degree of neck-in.

  • PDF