• Title/Summary/Keyword: shear-stress

Search Result 3,988, Processing Time 0.032 seconds

Prediction of Serrated Chip Formation due to Micro Shear Band in Metal (미소 전단 띠 형성에 의한 톱니형 칩 생성 예측)

  • 임성한;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.427-733
    • /
    • 2003
  • Adiabatic shear bands have been observed in the serrated chip during high strain rate metal cutting process of medium carbon steel and titanium alloy. The recent microscopic observations have shown that dynamic recrystallization occurs in the narrow adiabatic shear bands. However the conventional flow stress models such as the Zerilli-Armstrong model and the Johnson-Cook model, in general, do not predict the occurrence of dynamic recrystallization (DRX) in the shear bands and the thermal softening effects accompanied by DRX. In the present study, a strain hardening and thermal softening model is proposed to predict the adiabatic shear localized chip formation. The finite element analysis (FEA) with this proposed flow stress model shows that the temperature of the shear band during cutting process rises above 0.5T$\sub$m/. The simulation shows that temperature rises to initiate dynamic recrystallization, dynamic recrystallization lowers the flow stress, and that adiabatic shear localized band and the serrated chip are formed. FEA is also used to predict and compare chip formations of two flow stress models in orthogonal metal cutting with AISI 1045. The predictions of the FEA agreed well with the experimental measurements.

  • PDF

An experimental study on adjusting mechanism of Remote Center Compliance for assembly robots with shear stress control of Elastomer Shear Pads(ESP) (ESP의 전단 변형을 이용한 원격 순응 중심 장치의 순응 중심 조절 방법에 관한 실험적 고찰)

  • Lee, Sang-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.910-914
    • /
    • 2007
  • In this paper, an experimental study is performed to adjust position of compliance center of Elastomer Shear Pad Remote Center Compliance (ESP RCC) device, which is used on precise peg in hole process. In the study, variation of the lateral/axial stiffness of the ESP is proposed as a control parameter to adjust the position of compliance center of the ESP RCC. The variation of the stiffness of the ESP is achieved by controlling the shear stress of the ESP. To control the shear stress of the ESP, position of top side of the ESP is changed while remaining bottom side of the ESP is fixed on the RCC plate. To evaluate effect of the proposed idea, stiffness variations of the ESP on various shear stresses are measured, and variation of the compliance center is measured with the ESP RCC that can control the position of compliance center by using the shear stress. The measured data shows unique characteristics that have not been shown in other types of ESP VRCCs.

An Experimental Study for the Scale Effects on Shear Behavior of Rock Joint (절리면 전단거동의 크기효과에 관한 실험적 연구)

  • Lee, Sang-Eun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.31-41
    • /
    • 2006
  • The scale effect of specimens on the shear behavior of joints is studied by performing direct shear tests on six different sizes in Granite. The peak and residual shear stress, shear displacement, shear stiffness, and dilation angle are measured with the different normal stress(0.29~2.65MPa) and roughness parameters. It is also shown that both the joint roughness coefficient(JRC) and the joint compression strength(JCS) reduce with increasing joint length. A series of shear tests show about 56~67% reduction in peak shear stress, and about 18~44% in residual shear stress, respectively as the contact area of joint increases from 12.25 to $361cm^2$. Also the variation of dilation angle is $27^{\circ}$ at normal stress of 0.29 MPa and $6^{\circ}$ at normal stress of 2.65 MPa, respectively. The envelopes considering scale effect for JRC are made for the peak shear strength of rock joint in comparison with the Barton's equation.

  • PDF

Shear behavior of geotextile-encased gravel columns in silty sand-Experimental and SVM modeling

  • Dinarvand, Reza;Ardakani, Alireza
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.505-520
    • /
    • 2022
  • In recent years, geotextile-encased gravel columns (usually called stone columns) have become a popular method to increasing soil shear strength, decreasing the settlement, acceleration of the rate of consolidation, reducing the liquefaction potential and increasing the bearing capacity of foundations. The behavior of improved loose base-soil with gravel columns under shear loading and the shear stress-horizontal displacement curves got from large scale direct shear test are of great importance in understanding the performance of this method. In the present study, by performing 36 large-scale direct shear tests on sandy base-soil with different fine-content of zero to 30% in both not improved and improved with gravel columns, the effect of the presence of gravel columns in the loose soils were investigated. The results were used to predict the shear stress-horizontal displacement curve of these samples using support vector machines (SVM). Variables such as the non-plastic fine content of base-soil (FC), the area replacement ratio of the gravel column (Arr), the geotextile encasement and the normal stress on the sample were effective factors in the shear stress-horizontal displacement curve of the samples. The training and testing data of the model showed higher power of SVM compared to multilayer perceptron (MLP) neural network in predicting shear stress-horizontal displacement curve. After ensuring the accuracy of the model evaluation, by introducing different samples to the model, the effect of different variables on the maximum shear stress of the samples was investigated. The results showed that by adding a gravel column and increasing the Arr, the friction angle (ϕ) and cohesion (c) of the samples increase. This increase is less in base-soil with more FC, and in a proportion of the same Arr, with increasing FC, internal friction angle and cohesion decreases.

Shear Behavior of Rough Granite Joints Under CNS Conditions (일정 수직강성 조건하 화강암 인장절리의 전단거동 특성)

  • Park, Byung-Ki;Lee, Chang-Soo;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.17 no.3 s.68
    • /
    • pp.203-215
    • /
    • 2007
  • Stability and mechanical deformation behavior of rock masses are highly dependent on the mechanical characteristics of contained discontinuities. Therefore, mechanical characteristics of the discontinuities should be considered in the design of tunnel and underground structures. In this study, direct shear tests for rough granite joints were carried out under constant normal stiffness conditions. Effects of initial normal stress, shear velocity, and surface roughness on the characteristics of shear strength and deformation behaviors were examined. Results of shear testing under constant normal stiffness conditions reveal that shear behaviors could be classified into two categories, based on the amount of decrease in shear stress at the Int peak shear stress. With initial normal stiffness increasing, it turned out that shear displacement at peak stress and the first peak shear stress increased, however friction angle and friction coefficient showed decrease. In case of shear stiffness and average friction coefficient, it turned out that they are not dependent on the initial normal stress. Minor effects of shear velocity on rough joints were observed in several shear quantities. However, the effects of shear velocity were insignificant regardless of the normal stress increase. Change of shear strength and deformation characteristics on joint roughness were examined, however, it turned out that the variations were attributed to deviation of shear test specimens.

A Study on the Bond-Behavior of Bonded Concrete Overlays (접착식 콘크리트 덧씌우기 포장의 부착거동 연구)

  • Kim, Young-Kyu;Lee, Seung-Woo;Han, Seung-Hwan
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.31-45
    • /
    • 2012
  • PURPOSES: In Korea, rapid maintenance of distressed concrete pavement is required to prevent traffic jam of the highway. Asphalt concrete overlay has been used as a general maintenance method of construction for aged concrete pavement. AC overlay on existing concrete pavements experience various early distresses such as reflection crack, pothole and rutting, due to different physical characteristics between asphalt overlay and existing concrete pavement. Bonded concrete overlay(BCO) is a good alternative since it has advantages that can reduce various distresses during the service life since overlay material has similar properties with existing concrete pavements. Recently, BCO which uses the ultra rapid harding cement has been applied for maintenance of highway. BCO has advantage of structural performance since it does monolithic behave with existing pavement. Therefore, it is important to have a suitable bond strength criteria for securing performance of BCO. Bond strength criteria should be larger than normal tensile stress and horizontal shear stress occurred by traffic and environmental loading at bond interface. Normal tensile stress and horizontal shear stress need to estimated for the establishment of practical bond strength criteria. METHODS: This study aimed to estimate the bond stresses at the interface of BCO using the three dimensional finite element analysis. RESULTS: As a result of this study, major failure mode and maximum bond stress are evaluated through the analysis of normal tensile stress and horizontal shear stress for various traffic and environmental load conditions. CONCLUSIONS: It was known that normal tensile stresses are dominated by environmental loading, and, horizontal shear stresses are dominated by traffic loading. In addition, bond failure occurred by both of normal tensile stresses and horizontal shear stresses; however, normal tensile stresses are predominated over horizontal shear stresses.

Strength Characteristics of Clay Soil by Preconsolidation Pressure (선행하중(先行荷重)에 의한 점토(粘土)의 강도특성(强度特性))

  • Chon, Yong-Baek;Shin, Young-Gi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.3
    • /
    • pp.185-192
    • /
    • 2003
  • This study consolidation undrain Triaxial Compression Tests using constant confining pressure in clay that receive preconsolidation stress that is different and, void ratio, pore water pressure coefficient, shear strength compare with another thing theory and studied analyzing change relation of elastic modules. The summary of analysis is follows: If preconsolidation stress increases in same confining stress in relation of preconsolidation stress and deviator stress, deviator stress is proportional and increased. Can know that excess void pressure is proportional and decreases in size of preconsolidation stress in same confining stress state if preconsolidation stress increases preconsolidation stress and relation of excess void pressure. Also, over consolidated state can assume that this is thing by Dilatancy's effect though excess void pressure decreased remarkably. Preconsolidation stress and relation of stress path can know that shear strength degree increases preconsolidation stress increases, and specially, preconsolidation stress was appear in stress path form of overconsolidated state case of clay that receive at 300, 400, 500kPa in 100, 150kPa's deviator stress.

  • PDF

Influence of Wall Motion and Impedance Phase Angle on the Wall Shear Stress in an Elastic Blood Vessel Under Oscillatory Flow Conditions (맥동유동하에 있는 탄성혈관에서 벽면운동과 임피던스 페이즈앵글이 벽면전단응력에 미치는 영향)

  • 최주환;이종선;김찬중
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.363-372
    • /
    • 2000
  • The present study investigated flow dynamics of a straight elastic blood vessel under sinusoidal flow conditions in order to understand influence of wall motion and impedance phase angle(time delay between pressure and flow waveforms) on wall shear stress distribution using computational fluid dynamics. For the straight elastic tube model considered in the our method of computation. The results showed that wall motion induced additional terms in the axial velocity profile and the pressure gradient. These additional terms due to wall motion reduced the amplitude of wall shear stress and also changed the mean wall shear stress. Te trend of the changes was very different depending on the impedance phase angle. As the wall shear stress increased. As the phase angle was reduced from 0$^{\circ}$to -90$^{\circ}$for ${\pm}$4% wall motion case, the mean wall shear stress decreased by 10.5% and the amplitude of wasll shear stress increased by 17.5%. Therefore, for hypertensive patients vulnerable state to atherosclerosis according to low and oscillatory shear stress theory.

  • PDF

Changes of Salmon Meat Texture During Semi-Drying Process (조미 반건조 제품 가공 공정에 따른 연어육 Texture의 변화)

  • You Byeong-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.2
    • /
    • pp.264-270
    • /
    • 1997
  • To obtain basic data for processing semi-dried salmon meat product, the results that were measured the textural properties of salmon meat during salting, sugaring and drying process followed. Drying time and temperature were longer, the moisture amount of salmon meat were reduced. Hardness of salmon meat was direct proportion to shear stress, but hardness was inverse proportion to cohesiveness during drying process. After sugaring and salting salmon meat, drying time was longer, hardness and shear stress of salmon meat were increased. The sensory evaluation of the textures of sugaring salmon meat dried for 3 hrs showed slightly good. In the changes of texture of salmon meat during steaming hardness and shear stress of salmon meat dried for 4 hrs were higher than that dried for 10 hrs. And steaming time was longer, hardness of salmon meat dried for 4 hrs was decreased and cohesiveness was not changed.

  • PDF

Analyses of Shear Stress and Erosion Characteristic in a Vegetated Levee Revetment with Root Fiber Quantity (근모량에 따른 식생호안의 전단강도와 침식특성 분석)

  • Choi, Heung Sik;Lee, Woong Hee
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.1
    • /
    • pp.29-38
    • /
    • 2014
  • This study analyzed shear stress and erosion characteristic of a vegetated levee embankment with root fiber quantity, which is an important factor for evaluating the stability of it. The averaged root fiber quantity in a vegetated levee revetment was measured by the sampler manufactured by this research. The Phragmites Japonica Steud which is somewhat dominant species in a vegetated levee embankment was selected as an experimental vegetation. As a result of experiment of each flow regime, the shear stress was increased while root fiber quantity was increased and the erosion rate was exponentially decreased as the root fiber quantity was increased. The erosion rate was exponentially decreased as the shear stress was increased which is shown that the increase of shear stress by root fiber quantity results in the increase of erosion resistance in a vegetated soil. The relationship between shear stress and erosion rate with root fiber quantity were analyzed and their regression equations were suggested with high determination coefficients. The hydraulic stability is governed by the increase of shear stress by root fiber quantity and the Froude number of flow characteristic in a vegetated levee revetment.