• 제목/요약/키워드: shear-flexural deformation

검색결과 191건 처리시간 0.022초

A new and simple analytical approach to determining the natural frequencies of framed tube structures

  • Mohammadnejad, Mehrdad;Kazemi, Hasan Haji
    • Structural Engineering and Mechanics
    • /
    • 제65권1호
    • /
    • pp.111-120
    • /
    • 2018
  • This paper presents a new and simple solution for determining the natural frequencies of framed tube combined with shear-walls and tube-in-tube systems. The novelty of the presented approach is based on the bending moment function approximation instead of the mode shape function approximation. This novelty makes the presented solution very simpler and very shorter in the mathematical calculations process. The shear stiffness, flexural stiffness and mass per unit length of the structure are variable along the height. The effect of the structure weight on its natural frequencies is considered using a variable axial force. The effects of shear lag phenomena has been investigated on the natural frequencies of the structure. The whole structure is modeled by an equivalent non-prismatic shear-flexural cantilever beam under variable axial forces. The governing differential equation of motion is converted into a system of linear algebraic equations and the natural frequencies are calculated by determining a non-trivial solution for the system of equations. The accuracy of the proposed method is verified through several numerical examples and the results are compared with the literature.

Flexural and shear behaviour of profiled double skin composite elements

  • Anwar Hossain, K.M.;Wright, H.D.
    • Steel and Composite Structures
    • /
    • 제4권2호
    • /
    • pp.113-132
    • /
    • 2004
  • Double skin composite element (DSCE) is a novel form of construction comprising two skins of profiled steel sheeting with an infill of concrete. DSCEs are thought to be applicable as shear or core walls in a building where they can resist in-plane loads. In this paper, the behaviour of DSCE subjected to combined bending and shear deformation is described. Small-scale model tests on DSCEs manufactured from micro-concrete and very thin sheeting were conducted to investigate the flexural and shear behaviour along with analytical analysis. The model tests provided information on the strength, stiffness, strain conditions and failure modes of DSCEs. Detailed development of analytical models for strength and stiffness and their performance validation by model tests are presented.

프리스트레스트 콘크리트 보를 위한 변형률 기반 전단강도 모델 (Strain-Based Shear Strength Model for Prestressed Beams)

  • 강순필;최경규;박홍근
    • 콘크리트학회논문집
    • /
    • 제21권1호
    • /
    • pp.75-84
    • /
    • 2009
  • 이전 연구에서 제안된 변형률 기반 전단강도모델에 근거하여, 프리스트레스트 콘크리트 보의 전단강도를 예측하기 위한 해석모델을 제안하였다. 전단보강 되지 않은 콘크리트 보에서는 일반적으로 인장대보다 콘크리트 압축대가 주로 전단력에 저항한다. 콘크리트의 전단성능은 콘크리트의 재료 파괴기준을 통해 정의된다. 압축대의 전단성능은 단면에 작용하는 수직응력과의 상관관계를 고려하여, 경사 파괴면을 따라서 산정된다. 압축대의 수직응력 분포는 부재의 휨변형에 따라 변화하므로, 압축대 단면의 전단성능은 휨변형에 대한 함수이다. 보의 전단강도는 전단성능 곡선과 전단수요 곡선의 교점에서 결정된다. 제안된 해석모델을 기존 연구자들의 실험 연구 결과와 비교한 결과, 실험체의 전단강도를 정확하게 예측하였다.

프리스트레스트 콘크리트 보를 위한 변형률 기반 전단강도 모델 (Strain-Based Shear Strength Model for Prestressed Concrete Beams)

  • 강순필;박홍근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.197-200
    • /
    • 2008
  • 이전 연구에서 제안된 변형률 기반 전단강도모델을 휨-압축 부재에 적용하여, 프리스트레스트 콘크리트 보의 전단강도를 예측하기 위한 해석모델을 제안하였다. 전단보강 되지 않은 콘크리트 휨-압축 부재에서는 균열발생 이후, 일반적으로 인장대보다 콘크리트 압축대가 주로 전단력에 저항한다. 압축대 콘크리트의 전단성능은 콘크리트의 재료 파괴기준을 통해 정의된다. 그리고 압축대의 전단성능은 단면에 작용하는 수직응력과의 상관관계를 고려하여, 주응력방향에 의해 결정되는 파괴면을 따라서 산정된다. 압축대의 수직응력 분포는 부재의 휨변형에 따라 변화하므로, 압축대 단면의 전단성능은 휨변형에 대한 함수이다. 부재의 전단강도는 전단 성능 곡선과 수요 곡선의 교점에서 결정된다. 제안된 해석모델을 기존 연구자들의 실험 연구 결과와 비교한 결과, 실험체의 전단강도를 정확하게 예측하였다.

  • PDF

등기하해석에 의한 기능경사복합재 판의 역학적 거동 예측 (Isogeometric Analysis of FGM Plates in Combination with Higher-order Shear Deformation Theory)

  • 전준태
    • 한국재난정보학회 논문집
    • /
    • 제16권4호
    • /
    • pp.832-841
    • /
    • 2020
  • 연구목적: 본 연구에서는 고차전단변형이론을 적용한 등기하해석 방법을 이용하여 기능경사복합재 판의 휨에 의한 역학적 거동을 해석하고자 하였다. 연구방법: 기능경사복합재 판의 역학적 거동을 보다 더 정확하게 해석하기 위해서 전단보정계수를 도입할 필요가 없는 기하학적 비선형을 고려한 고차전단변형이론을 이용하여 휨을 받는 기능경사복합재 판의 평형방정식과 지배방정식을 도출하였으며, 등기하 해석방법에 의한 수정된 Newton-Raphson 반복법을 이용하여 방정식들을 풀었다. 연구결과: 판의 용적비, 길이-두께 비 및 경계조건은 기능경사복합재 판의 휨 거동에 상당한 영향을 미치는 것을 알 수 있었다. 결론: 제안된 등기하해석 방법은 휨을 받는 기능경사복합재 판의 역학적 거동을 해석하는데 있어 정확하고 효과적인 수치해석 방법임을 확인하였다.

Experimental Study on Low Cyclic Loading Tests of Steel Plate Shear Walls with Multilayer Slits

  • Lu, Jinyu;Yu, Shunji;Qiao, Xudong;Li, Na
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1210-1218
    • /
    • 2018
  • A new type of earthquake-resisting element that consists of a steel plate shear wall with slits is introduced. The infill steel plate is divided into a series of vertical flexural links with vertical links. The steel plate shear walls absorb energy by means of in-plane bending deformation of the flexural links and the energy dissipation capacity of the plastic hinges formed at both ends of the flexural links when under lateral loads. In this paper, finite element analysis and experimental studies at low cyclic loadings were conducted on specimens with steel plate shear walls with multilayer slits. The effects caused by varied slit pattern in terms of slit design parameters on lateral stiffness, ultimate bearing capacity and hysteretic behavior of the shear walls were analyzed. Results showed that the failure mode of steel plate shear walls with a single-layer slit was more likely to be out-of-plane buckling of the flexural links. As a result, the lateral stiffness and the ultimate bearing capacity were relatively lower when the precondition of the total height of the vertical slits remained the same. Differently, the failure mode of steel plate shear walls with multilayer slits was prone to global buckling of the infill steel plates; more obvious tensile fields provided evidence to the fact of higher lateral stiffness and excellent ultimate bearing capacity. It was also concluded that multilayer specimens exhibited better energy dissipation capacity compared with single-layer plate shear walls.

Experimental and analytical assessment of SRF and aramid composites in retrofitting RC columns

  • Dang, Hoang V.;Shin, Myoungsu;Han, Sang Whan;Lee, Kihak
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.797-815
    • /
    • 2014
  • This research aimed to investigate retrofitting methods for damaged RC columns with SRF (Super Reinforced with Flexibility) and aramid composites and their impacts on the seismic responses. In the first stage, two original (undamaged) column specimens, designed to have a flexural- or shear-controlled failure mechanism, were tested under quasi-static lateral cyclic and constant axial loads to failure. Afterwards, the damaged column specimens were retrofitted, utilizing SRF composites and aramid rods for the flexural-controlled specimen and only SRF composites for the shear-controlled specimen. In the second stage, the retrofitted column specimens were tested again under the same conditions as the first stage. The hysteretic responses such as strength, ductility and energy dissipation were discussed and compared to clarify the specific effects of each retrofitting material on the seismic performances. Generally, SRF composites contributed greatly to the ductility of the specimens, especially for the shear-controlled specimen before retrofitting, in which twice the deformation capacity was obtained in the retrofitted specimen. The shear-controlled specimen also experienced a flexural failure mechanism after retrofitting. In addition, aramid rods moderately fortified the specimen in terms of the maximum shear strength. The maximum strength of the aramid-retrofitted specimen was 12% higher than the specimen without aramid rods. In addition, an analytical modeling of the undamaged specimens was conducted using Response-2000 and Zeus Nonlinear in order to further validate the experimental results.

소성 변형을 고려한 전단 지배 부재의 스트럿-타이 모델 (The Strut-and-Tie Models for Shear Dominant R/C Members considering Plastic Deformations)

  • 홍성걸;장상기
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.145-152
    • /
    • 2005
  • This paper presents a deformable strut-and-tie model of determining the shear strengths and ultimate deformations of the shear-dominant reinforced concrete members. The proposed model originates from the strut-and-tie model concept and satisfies equilibrium, compatibility, constitutive laws, and the geometric conditions of shear deformation. This study attempts to apply deformation patterns to strut-and-tie models. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. The validity and accuracy of the proposed model is then tested against available experimental data. The parameters reviewed include the ratios of truss action and arch action, the reinforcement ratios, and the shear span-depth ratio. It is expected that this model can be applied to displacement-based design methods.

  • PDF

모아레 간섭계를 이용한 WB-PBGA 패키지의 온도변화 및 굽힘하중에 대한 거동해석 (Thermomechanical and Flexural Behavior of WB-PBGA Package Using $Moir{\acute{e}}$ Interferometry)

  • 주진원;이창희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.90-95
    • /
    • 2001
  • Thermo-mechanical and flexural behavior of a wire-bond plastic ball grid array (WB-PBGA) are characterized by high sensitive $moir{\acute{e}}$ interferometry. $Moir{\acute{e}}$ fringe patterns are recorded and analyzed at several various bending loads and temperature steps. At the temperature higher that $100^{\circ}C$, the inelastic deformation in solder balls became more dominant. As a result the bending of the molding compound decreased while temperature increased. The strain results show that the solder ball located at the edge of the chip has largest shear strain by the thermal load while the maximum average shear strain by the bending moment occurs in the end solder. The results also show that $moir{\acute{e}}$ interferometry is a powerful and effective tool in experimental studies of electronic packaging.

  • PDF

Comparative experimental study on seismic retrofitting methods for full-scale interior reinforced concrete frame joints

  • Yang Chen;Xiaofang Song;Yingjun Gan;Chong Ren
    • Structural Engineering and Mechanics
    • /
    • 제86권3호
    • /
    • pp.385-397
    • /
    • 2023
  • This study presents an experiment and analysis to compare the seismic behavior of full-scale reinforced concrete beam-column joint strengthened by prestressed steel strips, externally bonded steel plate, and CFRP sheets. For experimental investigation, five specimens, including one joint without any retrofitting, one joint retrofitted by externally bonded steel plate, one joint retrofitted by CFRP sheets, and two joints retrofitted by prestressed steel strips, were tested under cyclic-reserve loading. The failure mode, strain response, shear deformation, hysteresis behavior, energy dissipation capacity, stiffness degradation and damage indexes of all specimens were analyzed according to experimental study. It was found that prestressed steel strips, steel plate and CFRP sheets improved shear resistance, energy dissipation capacity, stiffness degradation behavior and reduced the shear deformation of the joint core area, as well as changed the failure pattern of the specimen, which led to the failure mode changed from the combination of flexural failure of beams and shear failure of joints core to the flexural failure of beams. In addition, the beam-column joint retrofitted by steel plate exhibited a high bearing capacity, energy consumption capacity and low damage index compared with the joint strengthened by prestressed steel strip, and the prestressed steel strips reinforced joint showed a high strength, energy dissipation capacity and low shear deformation, stirrups strains and damage index compared to the CFRP reinforced joint, which indicated that the frame joints strengthened with steel plate exhibited the most excellent seismic behavior, followed by the prestressed steel strips.