• 제목/요약/키워드: shear transfer coefficient

검색결과 60건 처리시간 0.023초

스트럿-타이 모델에 의한 고강도 철근콘크리트 깊은 보의 전단강도 예측에 관한 연구 (A Study on Shear Strength Prediction for High-Strength Reinforced Concrete Deep Beams Using Strut-and-Tie Model)

  • 이우진;서수연;윤승조;김성수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.918-923
    • /
    • 2003
  • Reinforced concrete deep beams are commonly used in many structural applications, including transfer girders, pile caps, foundation walls, and offshore structures. The existing design methods were developed and calibrated using normal strength concrete test results, and their applicability th HSC deep beams must be assessed. For the shear strength prediction of high-strength concrete(HSC) deep beams, this paper proposed Softened Strut-and-Tie Model(SSTM) considered HSC and bending moment effect. The shear strength predictions of the refined model, the formulas the ACI 318-02 Appendix A STM, and Eq. of ACI 318-99 11.8 are compared with the collected experimental data of 74 HSC deep beams with compressive strength in the range of 49-78MPa . It is shown the shear strength of deep beam calculated by those equations are conservative on comparing test results. The comparison shows that the performance of the proposed SSTM is better than the ACI Code approach for all the parameters under comparison. The parameters reviewed include concrete strength, the shear span-depth ratio, and the ratio of horizontal and vertical reinforcement. The proposed SSTM gave a mean predicted to experimental ratio of 0.99, 32 percent higher than ACI 318-02 Code, however with the low coefficient variation.

  • PDF

콘크리트 시공줄눈 면에서 점착력 및 마찰계수의 변화를 고려한 전단내력 평가 (Estimation of Shear Strength Along Concrete Construction Joints Considering the Variation of Concrete Cohesion and Coefficient of Friction)

  • 양근혁;권혁진;박종범
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권6호
    • /
    • pp.106-112
    • /
    • 2017
  • 본 연구에서는 콘크리트 시공줄눈 면의 전단마찰 내력을 합리적으로 평가하기 위하여 콘크리트 소성론의 상계치 이론에 기반한 수학적 모델을 제시하였다. 전단면에서 횡보강근의 전단전달에 대한 과대평가를 피하기 위하여 시공줄눈 면에서의 하중전달에 대한 스트럿-타이 모델에서 콘크리트 할렬 및 압괴의 한계상태로부터 전단마찰 내력의 상한값을 유도하였다. 제시된 모델은 시공줄눈 면에서 콘크리트 점착력과 마찰계수를 거친 면의 경우 각각 $0.27(f_{ck})^{0.65}$와 0.95를, 부드러운 면의 경우 각각 $0.11(f_{ck})^{0.65}$와 0.64로 결정하였는데, 여기서 $f_{ck}$는 콘크리트 압축강도이다. 직접전단에 대한 기존 문헌으로부터 수집한 146 실험데이터와의 비교로부터, 제시된 모델은 AASHTO 및 fib 2010 식에 비해 예측 값과 실험 값들의 비의 표준편차 및 변동계수에 대해 더 낮은 값을 보였다. 특히 전단마찰 내력 평가에서 기준식들의 상당한 과소평가 경향과 달리 제시된 모델은 실험결과와 잘 예측하였다.

Application of Scale-Up Criterion of Constant Oxygen Mass Transfer Coefficient ($k_La$) for Production of Itaconic Acid in a 50 L Pilot-Scale Fermentor by Fungal Cells of Aspergillus terreus

  • Shin, Woo-Shik;Lee, Dohoon;Kim, Sangyong;Jeong, Yong-Seob;Chun, Gie-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권10호
    • /
    • pp.1445-1453
    • /
    • 2013
  • The scale-up criterion of constant oxygen mass transfer coefficient ($k_La$) was applied for the production of itaconic acid (IA) in a 50 L pilot-scale fermentor by the fungal cells of Aspergillus terreus. Various operating conditions were examined to collect as many $k_La$ data as possible by adjusting the stirring speed and aeration rate in both 5 L and 50 L fermentor systems. In the fermentations performed with the 5 L fermentor, the highest IA production was obtained under the operating conditions of 200 rpm and 1.5 vvm. Accordingly, we intended to find out parallel agitation and aeration rates in the 50 L fermentor system, under which the $k_La$ value measured was almost identical to that ($0.02sec^{-1}$) of the 5 L system. The conditions of 180 rpm and 0.5 vvm in the 50 L system turned out to be optimal for providing almost the same volumetric amount of dissolved oxygen (DO) into the fermentor, without causing shear damage to the producing cells due to excessive agitation. Practically identical fermentation physiologies were observed in both fermentations performed under those respective operating conditions, as demonstrated by nearly the same values of volumetric ($Q_p$) and specific ($q_p$) IA production rates, IA production yield ($Y_{p/s}$), and specific growth rate (${\mu}$). Specifically, the negligible difference of the specific growth rate (${\mu}$) between the two cultures (i.e., $0.029h^{-1}$ vs. $0.031h^{-1}$) was notable, considering the fact that ${\mu}$ normally has a significant influence on $q_p$ in the biosynthesis of secondary metabolites such as itaconic acid.

수평원형관내 나노유체의 혼합대류에 관한 수치적 연구 (Numerical Study of Mixed Convection Nanofluid in Horizontal Tube)

  • 최훈기;임윤승
    • 융합정보논문지
    • /
    • 제9권8호
    • /
    • pp.155-163
    • /
    • 2019
  • 수평원형관에서 나노입자인 산화알미늄과 기본유체인 물의 혼합인 나노유체에 대한 층류 혼합대류열전달현상을 유한체적법의 수치적 방법으로 규명하였다. 나노유체에 대하여 2상 혼합모델을 적용하였으며, 나노입자의 물성은 온도와 체적농도의 함수를 사용하였다. 수치해석에 적용한 모든 모델의 타당성 검증을 위하여 Kim등의 실험결과와 비교하였으며 좋은 결과를 얻었다. 벽면을 일정한 열유속으로 가열하므로 나노유체는 벽면부근에서 형성된 부력에 의하여 2차유동이 생성된다. Richardson수와 나노입자의 농도가 증가할수록 강한 2차유동이 형성되어 열전달을 향상시키게 된다. 또한 Richardson수와 나노입자의 농도가 증가하면 대류열전달계수와 전단응력도 증가한다. 이런 연구들은 열교환기의 성능향상을 위하여 나노유체를 적용하는데 기본자료로 활용이 가능하다. 이번 연구를 기반으로 향후 2중관형열교환기등 다양한 열교환기에 적용할 예정이다.

Tribology특성 향상을 위한 Ag 박막의 형성과 평가에 관한 연구 (A Study on Formation and Evaluation of he Thin Films for Improvement of Tribology Properties)

  • 이경황;이상기;송복한;정병진;박창남;문경만;이명훈
    • 한국표면공학회지
    • /
    • 제33권5호
    • /
    • pp.319-328
    • /
    • 2000
  • Silver is known to have such characteristics as low shear strength, good transfer-film forming tendency, and good corrosion resistance. Silver thin films have been prepared by ion plating of physical vapour deposition (PVD) using both argon gas pressure and bias voltage of processing condition. After the silver films were prepared, the properties in them were examined by gas pressure and bias voltage of substrate. Their morphology and crystal orientation were investigated by scanning electron microscopy (SEM) and X-ray diffractor. The properties of film were, also, studied to relate with morphology, X-ray diffraction pattern, and friction coefficient at vacuum ambient. The friction coefficient was stabilized remarkably on deposited films with increasing argon pressure for deposition. Also, the effect of increasing of the bias voltage for deposition resulted in lower friction coefficient and stability in $1.7$\times$10^{-4}$ torr. On the contrary, behavior of friction coefficient was stabilized on deposited films with decreasing the bias voltage in $1.7$\times$10^{-5}$ torr for deposition.

  • PDF

The flexural performance of laminated glass beams under elevated temperature

  • Huang, Xiaokun;Liu, Gang;Liu, Qiang;Bennison, Stephen J.
    • Structural Engineering and Mechanics
    • /
    • 제52권3호
    • /
    • pp.603-612
    • /
    • 2014
  • A series of experimental work is carried out with the aim to understand the flexural performance of laminated glass (LG) beams using polyvinyl butyral (PVB) and Ionoplast interlayers subjected to short term duration loads in the circumstance of elevated temperature. The study is based on a total of 42 laboratory tests conducted in ambient temperature ranging from $25^{\circ}C$ to $80^{\circ}C$. The load duration is kept within 20 seconds. Through the tests, load-stress and load-deflection curves of the LG are established; appropriate analytical models for the LG are indentified; the effective thicknesses as well as the shear transfer coefficients of the LG are semi-empirically determined. The test results show that within the studied temperature range the bending stresses and deflections at mid-span of the LG develop linearly with respect to the applied loads. From $25^{\circ}C$ to $80^{\circ}C$ the flexural behavior of the PVB LG is found constantly between that of monolithic glass and layered glass having the same nominal thickness; the flexural behavior of the Ionoplast LG is equivalent to monolithic glass of the same nominal thickness until the temperature elevates up to $50^{\circ}C$. The test results reveal that in calculating the effective thicknesses of the PVB and Ionoplast LG, neglecting the shear capacities of the interlayers is uneconomic even when the ambient temperature is as high as $80^{\circ}C$. In the particular case of this study, the shear transfer coefficient of the PVB interlayer is found in a range from 0.62 to 0.14 while that of the Ionoplast interlayer is found in a range from 1.00 to 0.56 when the ambient temperature varies from $25^{\circ}C$ to $80^{\circ}C$.

사출성형 섬유강화플라스틱 볼트 연결부의 강도 평가를 위한 실험적 연구 (An Experimental Study for the Strength Evaluation of Bolted Connection in Resin Transfer Molding Fiber Reinforced Polymeric Plastic)

  • 최진우;김선희
    • 도시과학
    • /
    • 제11권2호
    • /
    • pp.25-30
    • /
    • 2022
  • Resin Transfer Molding FRP (RTM FRP) is a fiber reinforced polymeric plastic which is manufactured by applying pressure to fibers, injecting resin into a mold, and then impregnating it. RTM FRP is a new construction material suitable for producing non-continuum structural elements such as sole plate because it has excellent strength and can produce many members in a short time. In this study, experiments were conducted to estimate the capacity of the bolted connection of RTM FRP. First, a tensile test was conducted to confirm the mechanical properties such as the tensile strength of the RTM FRP to be used for the bolted connection experiments. In addition, experiments were conducted on the bolted connection with the thickness of the RTM FRP and the edge distance of the bolt as variables. In the first experiment, F4.8 bolts were used, and shear failure of the bolt occurred before the RTM FRPs were failed. The F4.8 bolt is a general structural bolts used for the sole plate of a bridge bearing, and it was confirmed that the RTM FRP has a higher bold bearing strength than the shear strength of a F4.8 bolt. In the second experiment, G12.9 bolts were used, and shear failure of the bolt and bearing failure of the RTM FRP occurred simultaneously. In addition, as the thickness of the RTM FRP and the edge length of the bolt increased, the strength of the joint increased. When analogized with the bearing fracture equation of steel plate, the bolted connection of RTM FRP showed a bearing strength coefficient of 0.420 to 0.549 compared to the tensile strength, and it is considered that further research is needed.

Poly (sodium 4-styrenesulfonate)/ 물 이성분용액의 초음파 음속 및 흡수계수측정 (Ultrasonic Velocity and Absorption Measurements for poly (sodium 4-styrenesulfonate) and Water Solutions)

  • 배종림
    • 한국음향학회지
    • /
    • 제23권7호
    • /
    • pp.497-502
    • /
    • 2004
  • Poly (sodium 4-styrenesulfonate) 수용액에 대한 3 MHz의 초음파 음속측정과 0.2-2.2 MHz의 범위에 대한 흡수계수를 측정하였다. 음속은 펄스법을 사용하여 농도 5-25 wt%, 온도 10-90 ℃에 대하여 측정한 결과, 농도 25, 20, 15, 10, 5 wt%에 대한음속의 최대치 온도는 각각 55, 59, 63, 67, 71 ℃이였다. 흡수계수측정은 광 회절 초음파공명법을 사용하여 농도 5-25 wt%, 20 ℃에서 행하였다. 그 결과, 200 kHz부근에서 고분자 chain의 부분운동에 의한 완화현상을, 1 MHz 부근에서는 술폰기 (SO₃)의 proton의 전이에 의한 완화현상을 각각 관측하였다. 흡수계수와 점성은 농도와 함께 증가하였으나 온도증가에 대해서는 감소하였다.

타원형 실린더에 의해 교란되어진 난류경계층에 관한 실험적 연구 (A Turbulent Boundary Layer Disturbed by an Elliptic Cylinder)

  • 최재호;조정원;이상준
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1476-1482
    • /
    • 2001
  • Turbulent boundary layer over a flat plate was disturbed by installing an elliptic cylinder with an axis ratio of AR=2. For comparison, the same experiment was carried out for a circular cylinder having the same vertical height. The surface pressure and the heat transfer coefficient on the flat plate were measured with varying the gap distance between the elliptic cylinder and the flat plate. The mean velocity and the turbulent intensity profile of the streamwise velocity component were measured using a hot-wire anemometry. As a result, the flow structure and the local heat transfer rate were modified by the interaction between the cylinder wake and the turbulent boundary layer as a function of the critical gap ratio where the regular vortices start to shed. For the elliptic cylinder, the critical gap ratio is increased and the surface pressure on the flat plate is recovered rapidly at downstream location, compared with the equivalent circular cylinder. The maximum heat transfer rate occurs at the gap ratio of G/B = 0.5, where the flow interaction between the lower shear layer of the cylinder wake and the turbulent boundary layer is strong.

CFD 해석을 통한 Plain형 핀-튜브 열교환기의 열전달 및 압력강하 특성에 관한 연구 (A study on heat transfer and pressure drop characteristics of plain fin-tube heat exchanger using CFD analysis)

  • 유소;윤준규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권6호
    • /
    • pp.615-624
    • /
    • 2014
  • 핀-튜브 열교환기는 산업용 보일러, 라디에이터, 냉동기 등에 많이 사용되고 있어 열교환기의 성능향상을 위한 다양한 연구가 진행되고 있다. 본 연구에서는 Plain형 핀-튜브 열교환기에 대해 가로피치, 와류발생기위치, 튜브표면의 돌기형상 및 돌기개수 등의 변화에 따른 열전달 및 압력강하 특성을 이론적으로 해석하였다. CFD 해석시 경계조건으로는 SST 난류모델을 적용하였으며, 튜브표면의 온도는 333 K이고, 입구측 공기의 온도와 속도는 423~438 K, 1.5~2.1 m/s로 가정하였다. 해석결과로는 열전달계수는 가로피치에 대한 영향은 큰 차이가 없으며, 열전달특성은 와류발생기 설치가 튜브 전방부에 위치할수록 양호한 것으로 나타났다. 또한 튜브표면의 돌기형상은 열전달 및 압력강하 특성에서 원형이 톱니형과 삼각형보다 적절하였으며, 16개 원형 돌기형상이 가장 양호하였다.