• Title/Summary/Keyword: shear structure

Search Result 2,353, Processing Time 0.028 seconds

A Study on the Response Modification Factor for a 5-Story Reinforced Concrete IMRF (5층 철근콘크리트 중간모멘트골조의 반응수정계수에 관한 연구)

  • Kang, Suk-Bong;Lim, Byeong-Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.13-21
    • /
    • 2012
  • In this study, the response modification factor for a RC IMRF is evaluated via pushover analysis, where 5-story structures were designed in accordance with KBC2009. The bending moment-curvature relationship for beams and columns was identified with a fiber model, and the bending moment-rotation relationship for beam-column joints was calculated using a simple and unified joint shear behavior model and the moment equilibrium relationship for the joint. The results of the pushover analysis showed that the strength of the structure was overestimated with negligence of the inelastic shear behavior of the beam-column joint, and that the average response modification factor for category C was 7.78 and the factor for category D was 3.64.

Experimental Investigation of the Lateral Load Capacity and Strength Characteristics of a Steel Plate Concrete (SC) Shear Wall (비보강 강판콘크리트 전단벽의 횡하중 성능 및 강도특성에 대한 실험적 평가)

  • Cho, Sung-Gook;So, Gi-Hwan;Kim, Doo-Kie;Kwon, Min-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.23-32
    • /
    • 2012
  • Research on steel plate concrete (SC) structures for the modularization of nuclear power plants have been performed recently in Korea. In this study, the seismic capacity and stiffness characteristics of unstiffened SC shear walls under the effects of earthquakes were investigated through static pushover tests. Failure modes, sectional strength, and stiffness characteristics of SC structures under lateral loads were inspected by analyzing the experimental results. The strengths obtained by the experiments were also compared with those derived by the design code of the SC structures. One of the main failures of unstiffened SC shear walls was found to be the type of bending shear failure due to the debonding of the steel plate at the concrete interface. The ductility capacity of SC structures was also confirmed to be improved, which is considered to be a confining effect on steel plates in the longitudinal behavior of SC structures.

Static Experiment for the Seismic Performance of a 2 Story RC Shear Wall System (2층 RC 전단벽식 구조물의 내진성능에 대한 정적 실험)

  • Lee, Sang-Ho;Oh, Sang-Hoon;Hwang, Won-Tae;Lee, Kyung-Bo;Lee, Han-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.55-65
    • /
    • 2010
  • The purpose of this experimental study is to evaluate the seismic performance of a 2 story RC shear wall system by the static reversal loading test. The lower 2 stories of the prototype structure were selected, and the specimens of this study were comprised of a T-type wall with an opening. The specimens were reduced to about 60% of the full scale size and were constructed to measure the result of the experimental variable regarding the existence of a lintel beam. To perform this study, the static repeated loading test was performed. According to the existence or absence of a lintel beam, the structural capacities and behavioral differences of the shear wall system were compared. The test results of this study showed that the specimen with a lintel beam underwent the seismic performance with an ultimate strength and ductility capacity better than the specimen without a lintel beam.

Aging Characteristic of Intermetallic Compounds and Bonding Strength of Flip-Chip Solder Bump (플립 칩 솔더 범프의 접합강도와 금속간 화합물의 시효처리 특성)

  • 김경섭;장의구;선용빈
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.1
    • /
    • pp.35-41
    • /
    • 2002
  • Flip-chip interconnection that uses solder bump is an essential technology to improve the performance of micro-electronics which require higher working speed, higher density, and smaller size. In this paper, the shear strength of Cr/Cr-Cu/Cu UBM structure of the high-melting solder bump and that of low-melting solder bump after aging is evaluated. Observe intermetallic compound and bump joint condition at the interface between solder and UBM by SEM and TEM. And analyze the shear load concentrated to bump applying finite element analysis. As a result of experiment, the maximum shear strength of Sn-97wt%Pb which was treated 900 hrs aging has been decreased as 25% and Sn-37wt%Pb sample has been decreased as 20%. By the aging process, the growth of $Cu_6/Sn_5$ and $Cu_3Sn$ is ascertained. And the tendency of crack path movement that is interior of a solder to intermetallic compound interface is found.

  • PDF

Design and Analysis of Section-divided Circular Composite Wing Spar (단면분할 원통형 복합재료 날개 보 설계 및 해석)

  • Kim, Ki-Hoon;Koo, Kyo-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.687-694
    • /
    • 2019
  • A circular composite spar in the wing of ultra-light aircraft is subjected to both bending moment and transverse shear loads. However, the beam being used in the aircraft may be inefficient because the design would not take into account the characteristics of the circular tube that supports the bending moment in top and bottom arc parts and the transverse load in left and right ones. Therefore, it is necessary to efficiently fabricate the circular tube beam by properly selecting the stacking sequences or the laminated composite structure. In order to increase both bending and transverse shear strengths of the beams, in this study, a cross-section of circular tube is divided into four arcs: top, bottom, left and right ones. The commercial program, MSC/NASTRAN is used to calculate vertical displacement and the normal and shear strains with variation of parameters such as division angle of arc and fiber orientation. Based on the results, the effective parameters for the new circular composite beam are presented to increase its bending and shear strengths.

Results of Delamination Tests of FRP- and Steel-Plate-Reinforced Larix Composite Timber

  • LEE, In-Hwan;SONG, Yo-Jin;SONG, Da-Bin;HONG, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.655-662
    • /
    • 2019
  • This study evaluated the multi-bonding performances of timbers as well as those of reinforcement and timber to obtain data for preparing guidelines regarding the use of timbers as large structural members. For the multi-bonding performances of timbers, four types of bonding surfaces were prepared according to the pith position. For the bonding performances of FRP (fiber-reinforced plastic)/steel plate and timber, a total of 11 types of specimens were produced for the selection of the appropriate adhesive. The bonding performances of the produced specimens were evaluated through a water soaking delamination test, a water boiling delamination test, and a block shear strength test. The test results showed that the bonding strength of the bonding surface according to the pith position was highest in the specimen for which the two sections with the pith at the center of the cross-section on timber and between the bonding surfaces (the tangential and radial sections were mixed) were bonded. Furthermore, the specimens for which the section (radial section) with the pith on the bonding surface of the timber was bonded showed a high delamination percentage. The results of the block shear strength test showed that the bonding section did not have a significant effect on the shear strength, and that the measured wood failure percentage was higher than the KS standard value. The PVAc adhesive showed the highest bonding strength between larix timber and GFRP (glass FRP). Furthermore, the epoxy and polyurethane adhesives showed good bonding strength for CFRP (carbon FRP) and structure steel, respectively.

Stress Distribution Study along Shear Test Specimen Shape for Bonding Strength Verification between Glass and Metal (금속-유리 간 접착강도 검증을 위한 전단시험 시편형상에 따른 응력분포 연구)

  • Kim, Hye-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.455-463
    • /
    • 2022
  • As the need for R&D for high reliability cameras, such as satellite cameras, increases, the reliability of the bonding strength properties between an opto-mechanical structure and an optical component has been secured through specimen tests. However, the widely used specimen shape is not suitable for the application of glass and glass-ceramic material, which is fragile, making it difficult to obtain accurate bonding properties due to stress concentration in glass parts before reaching the bonding strength limit. In this study, the stress distribution characteristics in the shear test condition for various specimen shapes were studied analytically, based on the test results of the glass material's own fracture. Through this, the shape characteristics capable of relieving the stress concentration of the glass part were derived, and the range of the bonding shear strength verifiable by the specimen test was improved.

Influence of moisture content on main mechanical properties of expansive soil and deformation of non-equal-length double-row piles: A case study

  • Wei, Meng;Liao, Fengfan;Zhou, Kerui;Yan, Shichun;Liu, Jianguo;Wang, Peng
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.139-151
    • /
    • 2022
  • The mechanical properties of expansive soil are very unstable, highly sensitive to water, and thus easy to cause major engineering accidents. In this paper, the expansive soil foundation pit project of the East Huada Square in the eastern suburb of Chengdu was studied, the moisture content of the expansive soil was considered as an important factor that affecting the mechanics properties of expansive soil and the stability of the non-equal-length double-row piles in the foundation pit support. Three groups of direct shear tests were carried out and the quantitative relationships between the moisture content and shear strength τ, cohesion c, internal friction angle φ were obtained. The effect of cohesion and internal friction angle on the maximum displacement and the maximum bending moment of piles were analyzed by the finite element software MIDAS/GTS (Geotechnical and Tunnel Analysis System). Results show that the higher the moisture content, the smaller the matrix suction, and the smaller the shear strength; the cohesion and the internal friction angle are exponentially related to the moisture content, and both are negatively correlated. The maximum displacement and the maximum bending moment of the non-equal length double-row piles decrease with the increase of the cohesion and the internal friction angle. When the cohesion is greater than 33 kPa or the internal friction angle is greater than 25.5°, the maximum displacement and maximum bending moment of the piles are relatively small, however, once crossing the points (the corresponding moisture content value is 24.4%), the maximum displacement and the maximum bending moment will increase significantly. Therefore, in order to ensure the stability and safety of the foundation pit support structure of the East Huada Square, the moisture content of the expansive soil should not exceed 24.4%.

3-Dimensional Design Failure Curve of Marine Silty Sand under Different Confining Pressures Subjected to Cyclic Loading (반복하중을 받는 해양 실트질 모래의 구속압에 따른 3차원 설계파괴곡선 산정)

  • Suwon, Son;Jongchan, Yoon;Jinman, Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.12
    • /
    • pp.25-31
    • /
    • 2022
  • Unlike structures installed on land, the structures installed on the offshore ground must consider long-term cyclic loads such as wave loads, wind loads and tidal loads at sea. Therefore, it is important to analyze the behavior of the ground subjected to long-term cyclic loads in order to design a structure installed on the ocean ground. In this paper, cyclic simple shear tests were performed to analyze the ground behavior for long-term cyclic loads according to the confining pressure, and a three-dimensional design failure curve was prepared that can easily check the failure characteristics according to the confining pressure. As a result of the analysis, it was confirmed that the position of the design failure curve is different depending on the confining pressure even under the same conditions of the cyclic shear stress ratio and the average shear stress ratio, and the number of cyclic loads reaching failure is affected by the confining pressure. From the created 3-D design failure curve under different confining pressure, the tendency and approximate value of the design failure curve according to the confining pressure can be estimated.

Modelling headed stud shear connectors of steel-concrete pushout tests with PCHCS and concrete topping

  • Lucas Mognon Santiago Prates;Felipe Piana Vendramell Ferreira;Alexandre Rossi;Carlos Humberto Martins
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.451-469
    • /
    • 2023
  • The use of precast hollow-core slabs (PCHCS) in civil construction has been increasing due to the speed of execution and reduction in the weight of flooring systems. However, in the literature there are no studies that present a finite element model (FEM) to predict the load-slip relationship behavior of pushout tests, considering headed stud shear connector and PCHCS placed at the upper flange of the downstand steel profile. Thus, the present paper aims to develop a FEM, which is based on tests to fill this gap. For this task, geometrical non-linear analyses are carried out in the ABAQUS software. The FEM is calibrated by sensitivity analyses, considering different types of analysis, the friction coefficient at the steel-concrete interface, as well as the constitutive model of the headed stud shear connector. Subsequently, a parametric study is performed to assess the influence of the number of connector lines, type of filling and height of the PCHCS. The results are compared with analytical models that predict the headed stud resistance. In total, 158 finite element models are processed. It was concluded that the dynamic implicit analysis (quasi-static) showed better convergence of the equilibrium trajectory when compared to the static analysis, such as arc-length method. The friction coefficient value of 0.5 was indicated to predict the load-slip relationship behavior of all models investigated. The headed stud shear connector rupture was verified for the constitutive model capable of representing the fracture in the stress-strain relationship. Regarding the number of connector lines, there was an average increase of 108% in the resistance of the structure for models with two lines of connectors compared to the use of only one. The type of filling of the hollow core slab that presented the best results was the partial filling. Finally, the greater the height of the PCHCS, the greater the resistance of the headed stud.