• Title/Summary/Keyword: shear structure

Search Result 2,353, Processing Time 0.029 seconds

Case Study on Rock Slope Failures Caused by Geologic Structures (지질구조 영향에 의한 암반비탈면 붕괴 사례 연구)

  • Park, Boo Seong;Cho, Hyun;Park, Dong In;Kim, Jun Ho;Choi, Jae Ho
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.417-427
    • /
    • 2017
  • This study aims to present cases of rock slope failures caused by geological structures. Status of slope failures, results of cause analysis and stabilizing methods are introduced, focusing primarily on rock slope failures caused by specific geologic structures, such as intersection of faults infilled with clay, foliation and fault shear zone by dike intrusion and deep-seated clayey layer along lithologic boundary. Detailed geological survey, geophysical exploration and boring survey were conducted for cause analysis. Stabilizing method to prevent further slope failures and to ensure long-term stability of slopes were established, considering characteristics of geological structures, types of failure and geological conditions.

An Interpretation of Deleuze's Other Geometry in Terms of Liquid Space - Focused on Works Published since 2000 - (리퀴드 스페이스에 대한 들뢰즈의 타자의 기하학적 해석 - 2000년도 이후 발표된 작품을 중심으로 -)

  • Kim Sun-Hee;Lee Hanna
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.5 s.52
    • /
    • pp.98-105
    • /
    • 2005
  • Through advanced computer technology, our physical environment became a flexible and liquid space that is a multi-functional space structure, hetero-alliance, formless, interactivity. We attempt to interpretate Deleuze's Other geometry as a space designer. Hence first, the aim of this study is to define the meaning of the Other and Other geometry. Second, to extract keywords out of the Other geometry to analyze the work. Third, to analyze the work using the space formative languages(blob, blurring, distortion, folding, layering, lightness, nesting, repetition, shear, transparency, twisting, unfolding, warping, waving, and weaving). The 13 works were selected which have been issued after year 2000 with the focus on liquid space studies. The methods of this study are literature research and contents analysis. The results of the analysis were as follows. First, the source is the Other who is a hidden potentials in the surrounding environment, and this source has the capability of making it part of reality anytime. Other geometry means it is a theory that is comprised of various lines that with the kind of experiences that one has in life. Second, the key words that were extracted from the theory of Deleuze's Other geometry were of (1)hetero-alliance(reflected in a sculptured shape or a fluid abstract form), (2)dis-form(by speculating the user's movements, and combining space elements with external forces), (3)interactivity (information was exchanged real time between the user and his environment where the space took on a sensory institution). Finally, after studying the works using the space formative languages, we found that blob, warping, waving were used externally, and repetition, warping and waving for mostly used internally.

A simplified design procedure for seismic retrofit of earthquake-damaged RC frames with viscous dampers

  • Weng, D.G.;Zhang, C.;Lu, X.L.;Zeng, S.;Zhang, S.M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.611-631
    • /
    • 2012
  • The passive energy dissipation technology has been proven to be reliable and robust for recent practical applications. Various dampers or energy dissipation devices have been widely used in building structures for enhancing their performances during earthquakes, windstorm and other severe loading scenarios. This paper presents a simplified seismic design procedure for retrofitting earthquake-damaged frames with viscous dampers. With the scheme of designing the main frame and the supplemental viscous dampers respectively, the seismic analysis model of damped structure with viscous dampers and braces was studied. The specific analysis process was described and approach to parameter design of energy dissipation components was also proposed. The expected damping forces for damped frame were first obtained based on storey shear forces; and then they were optimized to meet different storey drift requirements. A retrofit project of a RC frame school building damaged in the 2008 Wenchuan earthquake was introduced as a case study. This building was retrofitted by using viscous dampers designed through the simplified design procedure proposed in this paper. Based on the case study, it is concluded that this simplified design procedure can be effectively used to make seismic retrofit design of earthquake-damaged RC frames with viscous dampers, so as to achieve structural performance objectives under different earthquake risk levels.

Equivalent static wind loads analysis of tall television towers considering terrain factors of hilltops based on force measurement experiment

  • Ke, Shitang;Wang, Hao;Ge, Yaojun;Zhao, Lin;Cao, Shuyang
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.509-519
    • /
    • 2017
  • Wind field in mountainous regions demonstrates unique distribution characteristic as compared with the wind field of the flat area, wind load and wind effect are the key considerations in structural design of television towers situated in mountainous regions. The television tower to be constructed is located at the top of Xiushan Mountain in Nanjing, China. In order to investigate the impact of terrain factors of hilltops on wind loads, firstly a wind tunnel test was performed for the mountainous area within 800m from the television tower. Then the tower basal forces such as bending moments and shear strength were obtained based on high frequency force balance (HFFB) test. Based on the experiments, the improved method for determining the load combinations was applied to extract the response distribution patterns of foundation internal force and peak acceleration of the tower top, then the equivalent static wind loads were computed under different wind angles, load conditions and equivalent goals. The impact of terrain factors, damping ratio and equivalent goals on the wind load distribution of a television tower was discussed. Finally the equivalent static wind loads of the television tower under the 5 most adverse wind angles and 5 most adverse load conditions were computed. The experimental method, computations and research findings provide important references for the anti-wind design of high-rise structure built on hilltops.

The effect of composite-elastomer isolation system on the seismic response of liquid-storage tanks: Part I

  • Shahrjerdi, A.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.513-528
    • /
    • 2018
  • A typical viable technique to decrease the seismic response of liquid storage tanks is to isolate them at the base. Base-isolation systems are an efficient and feasible solution to reduce the vulnerability of structures in high seismic risk zones. Nevertheless, when liquid storage tanks are under long-period shaking, the base-isolation systems could have different impacts. These kinds of earthquakes can damage the tanks readily. Hence, the seismic behaviour and vibration of cylindrical liquid storage tanks, subjected to earthquakes, is of paramount importance, and it is investigated in this paper. The Finite Element Method is used to evaluate seismic response in addition to the reduction of excessive liquid sloshing in the tank when subjected to the long-period ground motion. The non-linear stress-strain behaviour pertaining to polymers and rubbers is implemented while non-linear contact elements are employed to describe the 3-D surface-to-surface contact. Therefore, Nonlinear Procedures are used to investigate the fluid-structure interactions (FSI) between liquid and the tank wall while there is incompressible liquid. Part I, examines the effect of the flexibility of the isolation system and the tank aspect ratio (height to radius) on the tank wall radial displacements of the tank wall and the liquid sloshing heights. Maximum stress and base shear force for various aspect ratios and different base-isolators, which are subjected to three seismic conditions, will be discussed in Part II. It is shown that the composite-base isolator is much more effective than other isolators due to its high flexibility and strength combined. Moreover, the base isolators may decrease the maximum level pertaining to radial displacement.

Antigenicity of Protein Entrapped in Poly(lactide-co-glycolide) Microspheres (폴리락티드-글리콜리드 마이크로스피어에 봉입된 단백질의 항원성 평가)

  • Song, Seh-Hyon;Cho, Seong-Wan;Shin, Taek-Hwan;Yoon, Mi-Kyoung;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.3
    • /
    • pp.191-196
    • /
    • 2001
  • Biodegradable polymeric microspheres were studied for their usefulness as carriers for the delivery of vaccine antigens. However, protein antigen could be denatured during microencapsulation processes due to the exposure to the organic phase and stress condition of cavitation and shear force. Therefore this study was carried out to re-evaluate the degree of protein denaturation during microencapsulation with poly(lactide-co-glycolide) (PLGA) copolymer. PLGA microspheres containing ovalbumin (OVA), prepared by W/O/W multiple emulsification method, were suspended in pH 7.4 PBS and incubated with shaking at $37.5^{\circ}C$. Drug released medium was collected periodically and analyzed for protein contents by micro-BCA protein assay. In order to evaluate the protein integrity, release medium was subjected to the analyses of SDS-PAGE and size exclusion chromatography (SEC). And enzyme-linked immunosorbent assay (ELISA) was introduced to measure the immunoreactivity of entrapped OVA and to get an insight into the three-dimensional structure of epitope. The structures of entrapped protein were not affected significantly by the results of SDS-PAGE and SEC. However, immunoreactivity of released antigen was varied, revealing the possibility of protein denaturation in some microspheres when it was evaluate by ELISA method. Therefore, in order to express the degree of protein denaturation, antigenicity ratio (AR) was obtained as follows: amount of immunoreactivity of OVA/total amount of OVA released ${\times}100(%)$. ELISA method was an efficient tool to detect a protein denaturation during microencapsulation and the comparison of AR values resulted in more accurate evaluation for immunoreactivity of entrapped protein.

  • PDF

A Study on Structural Design of High Efficency and Lightweight Composite Propeller Blades of Regional Aircraft (중형항공기 고효율 복합재 블레이드의 설계 연구)

  • Kong, Chang-Duk;Park, Hyun-Bum;Lee, Kyung-Sun;Choi, Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.501-504
    • /
    • 2011
  • In this study, structural design of the propeller blade for turboprop aircraft was performed. The propeller shall have high strength to get the thrust to fly at high speed. The high stiffness and strength carbon/epoxy composite material was used for the major structure and skin-spar-foam sandwich structural type was adopted for improvement of lightness. As a design procedure for the present study, firstly the structural design load was estimated through investigation on aerodynamic load and then flanges of spars from major bending loads and the skin from shear loads were preliminarily sized using the netting rule. In order to investigate the structural safety and stability, stress analysis was performed by finite element analysis code MSC. NASTRAN. Finally, it is investigated that designed blade have high efficiency and structural safety to analyze of aerodynamic and structural design results.

  • PDF

A study on chemical bonding characteristics of the interface between curved FRP panels for consecutive structural assembly (곡면 FRP 패널 부재 연속시공을 위한 연결부 화학적 접합 특성에 관한 연구)

  • Lee, Gyu-Phil;Shin, Hyu-Soung;Jung, Woo-Tai
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.1
    • /
    • pp.79-91
    • /
    • 2012
  • A curved fiber reinforced polymer (FRP) panel is produced with a certain width depending on allowances of manufacturing processes and facilities. An targeted arch-shaped structure could be built by sequential connection of series of the FRP panels. The connection manner between the FRP panels could be given by chemical treatment, mechanical treatment and hybrid method. Among those, the connection between the panels by chemical treatment is commonly adopted. Therefore, For an optimized design of the connected part between FRP pannels, a number of direct shear tests have been undertaken in terms of a number of parameters: surface treatment conditions, bonding materials, etc.. As results, surface grinding condition by sand paper or surface treatment by sand blasting appear properly acceptable methods, and epoxy and acryl resins are shown to be effective bonding materials for the purpose in this study.

The effect of cyclic loading on the rubber bearing with slit damper devices based on finite element method

  • Saadatnia, Mahdi;Riahi, Hossein Tajmir;Izadinia, Mohsen
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.215-222
    • /
    • 2020
  • In this paper, slit steel rubber bearing is presented as an innovative seismic isolator device. In this type of isolator, slit steel damper is an energy dissipation device. Its advantages in comparison with that of the lead rubber bearing are its simplicity in manufacturing process and replacement of its yielding parts. Also, slit steel rubber bearing has the same ability to dissipate energy with smaller value of displacement. Using finite element method in ABAQUS software, a parametric study is done on the performance of this bearing. Three different kinds of isolator with three different values of strut width, 9, 12 and 15 mm, three values of thickness, 4, 6 and 8 mm and two steel types with different yield stress are assessed. Effects of these parameters on the performance characteristics of slit steel rubber bearing are studied. It is shown that by decreasing the thickness and strut width and by selecting the material with lower yield stress, values of effective stiffness, energy dissipation capacity and lateral force in the isolator reduce but equivalent viscous damping is not affected significantly. Thus, by choosing appropriate values for thickness, strut width and slit steel damper yield stress, an isolator with the desired behavior can be achieved. Finally, the performance of an 8-storey frame with the proposed isolator is compared with the same frame equipped with LRB. Results show that SSRB is successful in base shear reduction of structure in a different way from LRB.

Nonlinear Analysis of Functionally Graded Materials Plates and Shells (점진기능재료(FGM) 판과 쉘의 비선형 해석)

  • Han, Sung-Cheon;Lee, Chang-Soo;Kim, Gi-Dong;Park, Weon-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.61-71
    • /
    • 2007
  • Navier's and Finite element solutions based on the first-order shear deformation theory are presented for the analysis of through-thickness functionally graded plates and shells. The functionally graded materials are considered: a sigmoid function is utilized for the mechanical properties through the thickness of the isotropic structure which varies smoothly through the plate and shell thickness. The formulation of a nonlinear 9-node Element-based Lagrangian shell element is presented for the geometrically nonlinear analysis. Natural-coordinate-based strains are used in present shell element. Numerical results of the linear and nonlinear analysis are presented to show the effect of the different top/bottom elastic modulus, loading conditions, aspect ratios and side-to-thickness ratios on the mechanical behaviors. Besides, the result according to the variation of the power-law index of isotropic functionally graded structures is investigated.