• Title/Summary/Keyword: shear structure

Search Result 2,353, Processing Time 0.028 seconds

Modeling and Vibration Feedback Control of Rotating Tapered Composite Thin-Walled Blade

  • Shim, Jae-Kyung;Sungsoo Na
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.380-390
    • /
    • 2003
  • This paper addresses the problem of the modeling and vibration control of tapered rotating blade modeled as thin-walled beams and incorporating damping capabilities. The blade model incorporates non-classical features such as anisotropy, transverse shear, secondary warping and includes the centrifugal and Coriolis force fields. For the rotating blade system, a thorough validation and assessment. of a number of non-classical features including the taper characteristics is accomplished. The damping capabilities are provided by a system of piezoactuators bonded or embedded into the structure and spread over the entire span of the beam. Based on the converse piezoelectric effect, the piezoactuators produce a localized strain field in response to a voltage and consequently, a change of the dynamic response characteristics is induced. A velocity feedback control law relating the piezoelectrically induced transversal bending moment at the beam tip with the appropriately selected kinematical response quantity is used and thebeneficial effects upon the closed-loop dynamic characteristics of the blade are highlighted.

Study on Fluid Flow and Heat Transfer Characteristics in a Flat Heat Pipe (평판형 히트 파이프 내의 유체 유동 및 열전달 특성에 관한 연구)

  • Do, Kyu-Hyung;Kim, Sung Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2113-2118
    • /
    • 2007
  • In this study, a mathematical model for a thermal analysis of a flat heat pipe with a grooved wick structure is presented. The effects of the liquid-vapor interfacial shear stress, the contact angle, and the amount of liquid charge have been included in the proposed model. In particular, the axial variations of the wall temperature and the evaporation/condensation rates are considered by solving the one-dimensional conduction and the augmented Young-Laplace equations, respectively. In order to verify the model, the results obtained from the model are compared to existing experimental data.

  • PDF

Dynamic Responses of Electrorheological Fluid in Steady Pressure Flow (정상압력 유동 하에서 전기유변유체의 동적 응답)

  • Nam, Yun-Joo;Park, Myeong-Kwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2879-2884
    • /
    • 2007
  • Dynamic responses of electrorheological (ER) fluids in steady pressure flow to stepwise electric field excitations are investigated experimentally. The transient periods under various applied electric fields and flow velocities were determined from the pressure behavior of the ER fluid in the flow channel with two parallel-plate electrodes. The pressure response times were exponentially decreased with the increase of the flow velocity, but increased with the increase of the applied electric field strength. In order to investigate the cluster structure formation of the ER particles, it was verified using the flow visualization technique that the transient response of ER fluids in the flow mode is assigned to the densification process in the competition of the electric field-induced particle attractive interaction forces and the hydrodynamic forces, unlike that in the shear mode determined by the aggregation process.

  • PDF

Earthquake Energy Response of Actively-controlled Structures (능동제에 구조물의 지진에너지 응답)

  • 민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.399-408
    • /
    • 2000
  • IN analyzing earthquake response of structures important focus is on their diaplacements and shear forces. However seismic technology of passive energy dissipation makes focus on the seismic energy distribution of structures. The passive dampers enhance the capability of energy dissipation by their hysteretic behavior thus preventing the structural plastic deformation. In this paper the building structure with an active controller is analyzed with the view of earthquake energy distribution under elastic and plastic behaviors. The active control makes an effect of increasing damping capability which absorbs most of the earthquake input energy. Finally the different active gains resulting from the plastic deformation are applied to the active analysis and control forces and earthquake energy response are compared.

  • PDF

Synthesis and Characterization of Lithium Dual Complex Grease (Lithium Dual Complex 그리이스의 합성 및 특성연구)

  • 최웅수;권오관;문탁진;유영홍
    • Tribology and Lubricants
    • /
    • v.1 no.1
    • /
    • pp.80-87
    • /
    • 1985
  • Lithium dual complex grease was prepared through the second continuous saponification reaction of a complex gellant system whose essential components comprised of a selected hydroxy fatty acid, lithium hydroxide monohydrate and boric acid to have a fiber structure of chemical, thermal and mechanical stability at high temperatures. An optimum amount of complex gellant was found to be 14% (NLGI #2), and an addition of castor wax of 1.5% provided an excellent performance properties, especially. The oil separation, oxidation stability, water wash-out property, shear stability, extreme pressure and wear property of thus prepared were tested by the ASTM and KS methods, and a characteristic result was obtained.

Numerical Study on Various Ribs in a Triangular Internal Cooling Channel (삼각형 내부냉각유로에 설치된 다양한 형태의 리브에 관한 수치해석적 연구)

  • Park, Min-Jung;Moon, Mi-Ae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.19-26
    • /
    • 2012
  • In this paper, a parametric study on ribs which are installed in an equilateral triangular internal cooling channel is presented. The numerical analysis of the flow structure and heat transfer characteristics is performed using three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model. The numerical results are obtained at Reynolds number, 20,000. The parametric study is performed for the parameters, the angle of a rib, rib pitch-to-hydraulic diameter ratio, rib width-to-hydraulic diameter ratio, and rib height-to-hydraulic diameter ratio. The computational results are validated with the experimental data for area-averaged Nusselt number.

Strengthening Effects of RC Column using Fiber Reinforced Polymer (섬유보강재를 이용한 RC 기둥의 보강 효과)

  • Lee, Hyun-Ho;Kim, Jin-Ho;Rho, Kwamg-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.473-480
    • /
    • 2012
  • In order to develop an effecive seismic strengthening metghod for existing concrete structure, structural tests of aramid FRP reinforced RC columns are performed. The test variables were strengthening methods of aramid sheet and strip. The test results were evaluated by comparing strength and energy dissipation capacities of non-reinforced and reinforced specimens. The test result comparison showed that aramid sheet reinforcement on RC column was evaluated as the most efficient way to increase strength and energy dissipation capacity.

A design procedure of dissipative braces for seismic upgrading structures

  • Bergami, A.V.;Nuti, C.
    • Earthquakes and Structures
    • /
    • v.4 no.1
    • /
    • pp.85-108
    • /
    • 2013
  • The research presented in this paper deals with the seismic protection of existing frame structures by means of passive energy dissipation. A displacement-based procedure to design dissipative bracings for the seismic protection of frame structures is proposed and some applications are discussed. The procedure is based on the displacement based design using the capacity spectrum method, no dynamic non linear analyses are needed. Two performance objective have been considered developing the procedure: protect the structure against structural damage or collapse and avoid non-structural damage as well as excessive base shear. The compliance is obtained dimensioning dissipative braces to limit global displacements and interstorey drifts. Reference is made to BRB braces, but the procedure can easily be extended to any typology of dissipative brace. The procedure has been validated through a comparison with nonlinear dynamic response of two 2D r.c. frames, one bare and one infilled. Finally a real application, on an existing 3D building where dissipative braces available on market are used, is discussed.

Mathematical modeling of actively controlled piezo smart structures: a review

  • Gupta, Vivek;Sharma, Manu;Thakur, Nagesh
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.275-302
    • /
    • 2011
  • This is a review paper on mathematical modeling of actively controlled piezo smart structures. Paper has four sections to discuss the techniques to: (i) write the equations of motion (ii) implement sensor-actuator design (iii) model real life environmental effects and, (iv) control structural vibrations. In section (i), methods of writing equations of motion using equilibrium relations, Hamilton's principle, finite element technique and modal testing are discussed. In section (ii), self-sensing actuators, extension-bending actuators, shear actuators and modal sensors/actuators are discussed. In section (iii), modeling of thermal, hygro and other non-linear effects is discussed. Finally in section (iv), various vibration control techniques and useful software are mentioned. This review has two objectives: (i) practicing engineers can pick the most suitable philosophy for their end application and, (ii) researchers can come to know how the field has evolved, how it can be extended to real life structures and what the potential gaps in the literature are.

Assessment of transient vibrations of graphene oxide reinforced plates under pulse loads using finite strip method

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, A.M.S.
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.575-585
    • /
    • 2020
  • Based on a refined shear deformation finite strip, transient vibrations of graphene oxide powder (GOP) reinforced plates due to external pulse loads have been investigated. The plate has uniformly and linearly distributed GOPs inside material structure. Applied pulse loads have been selected as sinusoidal, linear and blast types. Such pulse loads result in transient vibrations of the GOP-reinforced plates which are not explored before. Finite strip method (FSM) has been performed for solving the equations of motion and then inverse Laplace transform technique has been employed to derive transient responses due to pulse loading. It is reported in this study that the transient responses of GOP-reinforced plates are dependent on GOP dispersions, GOP volume fraction, type of pulse loading, loading time and load locations.