• Title/Summary/Keyword: shear structure

Search Result 2,353, Processing Time 0.029 seconds

Seismic performance of reinforced concrete shear wall buildings with underground stories

  • Saad, George;Najjar, Shadi;Saddik, Freddy
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.965-988
    • /
    • 2016
  • This paper investigates the seismic behavior of reinforced concrete shear wall buildings with multiple underground stories. A base-case where the buildings are modeled with a fixed condition at ground level is adopted, and then the number of basements is incrementally increased to evaluate changes in performance. Two subsurface site conditions, corresponding to very dense sands and medium dense sands, are used for the analysis. In addition, three ground shaking levels are used in the study. Results of the study indicated that while the common design practice of cropping the structure at the ground surface leads to conservative estimation of the base shear for taller and less rigid structures; it results in unpredicted and nonconservative trends for shorter and stiffer structures.

Modelling seismically repaired and retrofitted reinforced concrete shear walls

  • Cortes-Puentes, W. Leonardo;Palermo, Dan
    • Computers and Concrete
    • /
    • v.8 no.5
    • /
    • pp.541-561
    • /
    • 2011
  • The Finite Element Method (FEM) was employed to demonstrate that accurate simulations of seismically repaired and retrofitted reinforced concrete shear walls can be achieved provided a good analysis program with comprehensive models for material and structural behaviour is used. Furthermore, the analysis tool should have the capability to retain residual damage experienced by the original structure and carry it forward in the repaired and retrofitted structure. The focus herein is to provide quick, simple, but reliable modelling procedures for repair and retrofitting strategies such as concrete replacement, addition of diagonal reinforcing bars, bolting of external steel plates, and bonding of external steel plates and fibre reinforced polymer sheets, thus illustrating versatility in the modelling. Slender, squat, and slender-squat shear walls were investigated. The modelling utilized simple rectangular membrane elements for the concrete, truss bar elements for the steel and FRP retrofitting materials, and bond-link elements for the bonding interface between steel or FRP to concrete. The analyses satisfactorily simulated seismic behaviour, including lateral load capacity, displacement capacity, energy dissipation, hysteretic response, and failure mode.

Shear waves propagation in an initially stressed piezoelectric layer imperfectly bonded over a micropolar elastic half space

  • Kumar, Rajneesh;Singh, Kulwinder;Pathania, D.S.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.121-129
    • /
    • 2019
  • The present study investigates the propagation of shear waves in a composite structure comprised of imperfectly bonded piezoelectric layer with a micropolar half space. Piezoelectric layer is considered to be initially stressed. Micropolar theory of elasticity has been employed which is most suitable to explain the size effects on small length scale. The general dispersion equations for the existence of waves in the coupled structure are obtained analytically in the closed form. Some particular cases have been discussed and in one particular case the dispersion relation is in well agreement to the classical-Love wave equation. The effects of various parameters viz. initial stress, interfacial imperfection and micropolarity on the phase velocity are obtained for electrically open and mechanically free system. Numerical computations are carried out and results are depicted graphically to illustrate the utility of the problem. The phase velocity of the shear waves is found to be influenced by initial stress, interface imperfection and the presence of micropolarity in the elastic half space. The theoretical results obtained are useful for the design of high performance surface acoustic devices.

Evaluation of the change in Geotechnical properties due to the Construction of Civil engineering Structure using HWAW Method (HWAW방법을 이용한 토목구조물 건설에 따른 하부 지반 물성 변화 평가)

  • Park, Hyung-Choon;Noh, Hee-Kwan;Park, Byeong-Cheol;Kim, Min-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.182-187
    • /
    • 2010
  • In the various fields of Civil Engineering, shear modulus is very important input parameters to design many constructions and to analyze ground behaviors. In general, a shear wave velocity profile is decided by various experiments before constructing a structure and, analysis and design are carried out by using decided shear wave velocity profile of the site. However, if civil structures are started to construct, the shear wave velocity will be increased more than before constructions because of confining pressure increase by the load of structure. The evaluation of the change in shear wave velocity profile is used very importantly when maintaining, managing, reinforcing and regenerating existing structures. In this study, a non-destructively geotechnical investigation method by using the HWAW method is applied to an evaluation of change in properties of the site according to construction. Generally, the space for experiments is narrow when underground of existing or on-going structures is evaluate, so a prompt non-destructive experiment is required. This prompt non-destructive experiment would be performed by various in-situ seismic methods. However, most of in-situ seismic methods need more space for experiments, so it is difficult to be applied. The HWAW method using the Harmonic wavelet transforms, which is based on time-frequency analysis, determines shear wave velocity profile. It consists of a source as well as short receiver spacing that is 1~3m, and is able to determine a shear wave velocity profile from surface to deep depth by one test on a space. As the HWAW method uses only the signal portion of the maximum local signal/noise ratio to determine a profile, it provides reliability shear modulus profile such as under construction or noisy situation by minimizing effects of noise from diverse vibration on a construction site or urban area. To estimate the applicability of the proposed method, field tests were performed in the change of geotechnical properties according to constructing a minimized modeling bent. Through this study, the change of geotechnical properties of the site was effectively evaluated according to construction of a structure.

  • PDF

Seismic Behavior Evaluation of Unreinforced Masonry Structure Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 비보강 조적조 구조물의 지진거동평가)

  • 김희철;김관중;홍원기
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.9-16
    • /
    • 2001
  • The purpose of this study is to evaluate a seismic behavior of unreinforced masonry(URM) structure. For more efficient evaluation, quasi-dynamic analysis method is used in this study. The influence of soil-structure interaction on the seismic response of low rise structures is discussed through comparison of the computed seismic response for the structure on rigid or dense soil and that on soft soil. The results of analytical study show that the story shear forces and the base shear forces could increase on soft soil. Furthermore, it was observed that an approximate expressions prescribed in current seismic codes may underestimate the value of the base shear force of low rise buildings on soft soil.

  • PDF

Analysis of Blood Flow Interacted with Leaflets in MHV in View of Fluid-Structure Interaction

  • Park, Choeng-Ryul;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.613-622
    • /
    • 2001
  • Interaction of blood flow and leaflet behavior in a bileaflet mechanical heart valve was investigated using computational analysis. Blood flows of a Newtonian fluid and a non-Newtonian fluid with Carreau model were modeled as pulsatile, laminar, and incompressible. A finite volume computational fluid dynamics code and a finite element structure dynamics code were used concurrently to solve the flow and structure equations, respectively, where the two equations were strongly coupled. Physiologic ventricular and aortic pressure waveforms were used as flow boundary conditions. Flow fields, leaflet behaviors, and shear stresses with time were obtained for Newtonian and non-Newtonian fluid cases. At the fully opened phase three jets through the leaflets were found and large vortices were present in the sinus area. At the very final stage of the closing phase, the angular velocity of the leaflet was enormously large. Large shear stress was found on leaflet tips and in the orifice region between two leaflets at the final stage of closing phase. This method using fluid-structure interaction turned out to be a useful tool to analyze the different designs of existing and future bileaflet valves.

  • PDF

Soil and structure uncertainty effects on the Soil Foundation Structure dynamic response

  • Guellil, Mohamed Elhebib;Harichane, Zamila;Berkane, Hakima Djilali;Sadouk, Amina
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.153-163
    • /
    • 2017
  • The underlying goal of the present paper is to investigate soil and structural uncertainties on impedance functions and structural response of soil-shallow foundation-structure (SSFS) system using Monte Carlo simulations. The impedance functions of a rigid massless circular foundation resting on the surface of a random soil layer underlain by a homogeneous half-space are obtained using 1-D wave propagation in cones with reflection and refraction occurring at the layer-basement interface and free surface. Firstly, two distribution functions (lognormal and gamma) were used to generate random numbers of soil parameters (layer's thickness and shear wave velocity) for both horizontal and rocking modes of vibration with coefficients of variation ranging between 5 and 20%, for each distribution and each parameter. Secondly, the influence of uncertainties of soil parameters (layer's thickness, and shear wave velocity), as well as structural parameters (height of the superstructure, and radius of the foundation) on the response of the coupled system using lognormal distribution was investigated. This study illustrated that uncertainties on soil and structure properties, especially shear wave velocity and thickness of the layer, height of the structure and the foundation radius significantly affect the impedance functions, and in same time the response of the coupled system.

Study on Assembly of TF Coil Structure in KSTAR Tokamak (KSTAR 토카막 장치에서 TF 자석 구조물의 조립에 관한 검토)

  • Kim, K.M.;Choi, C.H.;Hong, K.H.;Yang, H.L.;Yu, I.K.;Her, N.I.;Sa, J.W.;Kim, H.K.;Kim, G.H.;Kim, S.T.;Kim, H.T.;Yang, J.S.;Bak, J.S.;Kim, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1262-1267
    • /
    • 2003
  • TF magnet structures are the main structural components in the KSTAR magnet systems to protect the superconducting coils from mechanical, electrical, and thermal loads. TF coil structure supports CS and PF coil system. The inter-coil structure contains adjustable shear keys and conical bolts to provide pre-loading in toroidal direction and to resist against in-plane and out-of-plane forces that are the most critical loads on the TF magnet system. The conical bolts and shear keys are specially designed to assemble easily and to provide a convenient accommodation for a good alignment. The connection plate that is one of the prototype fabrications had been manufactured to study adjustability of conical bolts and shear keys for assembly of TF coil structure. We could measure the misalignments at the keyways and conical holes with the misalignment measuring instrument.

  • PDF

Large-Scale Vortical Structures in The Developing Plane Mixing Layer Using LES

  • Seo, Taewon;Kim, Yeung-Chan;Keum, Kihyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.12-19
    • /
    • 2001
  • Study of turbulent mixing layers has been a popular subject from the point of view of both practical application and phenomenological importance in engineering field. Turbulent mixing layers can be applied in many fields where rapid transition to turbulence is desirable in order to prevent boundary layer separation or to enhance mixing. The ability to control mixing, structure and growth of the shear flow would obviously have a considerable impact on many engineering applications. In addition to practical applications, free shear flows are one of the simplest flows to understand the fundamental mechanism in the transition process to turbulence. After the discovery of large-scale vortical structure in free shear flows many researchers have investigated the physical mechanism of generation and dissipation processes of the vortical structure. This study investigated the role of the large-scale vortical structures in the turbulent mixing layer using LES(Large-Eddy Simulation). The result shows that the pairing interaction of the vortical structure plays an important role in the growth rate of a mixing layer. It is found that the turbulence quantities depend strongly on the velocity ratio. It is also found that the vorticity in the high-velocity-side can extract energy from the mean flow, while the vorticity in the low-velocity-side lose energy by the viscous dissipation. Finally the results suggest the guideline to obtain the desired flow by control of the velocity ratio.

  • PDF

Investigation of Damping Ratio of Steel Plate Concrete (SC) Shear Wall by Lateral Loading Test & Impact Test (횡방향 가력실험 및 충격실험을 통한 강판콘크리트(SC) 전단벽의 감쇠비 평가)

  • Cho, Sung Gook;So, Gi Hwan;Park, Woong Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.79-88
    • /
    • 2013
  • Steel plate concrete (SC) composite structure is now being recognized as a promising technology applicable to nuclear power plants as it is faster and suitable for modular construction. It is required to identify its dynamic characteristics prior to perform the seismic design of the SC structure. Particularly, the damping ratio of the structure is one of the critical design factors to control the dynamic response of structure. This paper compares the criteria for the damping ratios of each type of structures which are prescribed in the regulatory guide for the nuclear power plant. In order to identify the damping ratio of SC shear wall, this study made SC wall specimens and conducted experiments by cyclic lateral load tests and vibration tests with impact hammer. During the lateral loading test, SC wall specimens exhibited large ductile capacities with increasing amplitude of loading due to the confinement effects by the steel plate and the damping ratios increased until failure. The experimental results show that the damping ratios increased from about 6% to about 20% by increasing the load from the safe shutdown earthquake level to the ultimate strength level.