• Title/Summary/Keyword: shear strength degradation

Search Result 185, Processing Time 0.023 seconds

Towards improved models of shear strength degradation in reinforced concrete members

  • Aschheim, Mark
    • Structural Engineering and Mechanics
    • /
    • v.9 no.6
    • /
    • pp.601-613
    • /
    • 2000
  • Existing models for the shear strength degradation of reinforced concrete members present varied conceptual approaches to interpreting test data. The relative superiority of one approach over the others is difficult to determine, particularly given the sparseness of ideal test data. Nevertheless, existing models are compared using a suite of test data that were used for the development of one such model, and significant differences emerge. Rather than relying purely on column test data, the body of knowledge concerning degradation of concrete as a material is considered. Confined concrete relations are examined to infer details of the degradation process, and to establish a framework for developing phenomenologically-based models for shear strength degradation in reinforced concrete members. The possibility of linking column shear strength degradation with material degradation phenomena is explored with a simple model. The model is applied to the results of 7 column tests, and it is found that such a link is sustainable. It is expected that models founded on material degradation phenomena will be more reliable and more broadly applicable than the current generation of empirical shear strength degradation models.

Comparisons of Numerical Analyses considering the Effects of Shear Strength Degradation For Nonseismic Designed RC Frame (비내진 설계된 RC 골조에 대한 전단강도 감소 효과를 고려한 수치해석의 비교)

  • Lee, Young-Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.1-8
    • /
    • 2006
  • Nonseismic designed RC frame have a possibility of shear failure because of deficiencies of reinforcing details. To model the shear failure in numerical analysis, shear strength degradation models which Include Moehle's and ATC 40 are compared and applied to push-over analysis. For numerical analysis, three storied building frame is selected and designed according to Korean Concrete Design Code(2003). As results, It is shown that Moehle's shear strength degradation model estimates the shear strength lower than NZSEE model and has less variation than ATC 40 model and all the shear strengths of models are greater than the nominal shear strength of ACI 318. Also, from the numerical analysis, it is pointed out that there may be great difference in lateral drift capacity if a different shear strength model is used. And the capacity can be severely underestimated if the restraining model of plastic rotation of ATC 40 is used, compared to the use of shear spring model for shear degradation.

Pushover Analysis Considering Effects of Degradation of Shear Strength (전단강도 감소효과를 고려한 Pushover 해석)

  • Lee, Young-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.514-517
    • /
    • 2006
  • Nonseismic designed RC frame have a possibility of shear failure because of deficiencies of reinforcing details. To model the shear failure in numerical analysis, shear strength degradation models which include Moehle's and ATC 40 are compared and applied to push-over analysis. For numerical analysis, three storied building frame is selected and designed according to Korean Concrete Design Code(2003). From the numerical analysis, it is pointed out that there may be great difference in lateral drift capacity if a different shear strength model is used. And the capacity can be severely underestimated if the restraining model of plastic rotation of ATC 40 is used, compared to the use of shear spring for shear degradation.

  • PDF

Shear deformation model for reinforced concrete columns

  • Sezen, Halil
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.39-52
    • /
    • 2008
  • Column shear failures observed during recent earthquakes and experimental data indicate that shear deformations are typically associated with the amount of transverse reinforcement, column aspect ratio, axial load, and a few other parameters. It was shown that in some columns shear displacements can be significantly large, especially after flexural yielding. In this paper, a piecewise linear model is developed to predict an envelope of the cyclic shear response including the shear displacement and corresponding strength predictions at the first shear cracking, peak strength, onset of lateral strength degradation, and loss of axial-load-carrying capacity. Part of the proposed model is developed using the analysis results from the Modified Compression Field Theory (MCFT). The results from the proposed model, which uses simplified equations, are compared with the column test data.

Change of Interfacial properties by the Fiber Degradation in the Fiber Reinforced Composites (섬유강화 복합재료에서 섬유열화에 따른 계면특성의 변화)

  • Moon, Chang-Kwon;Kim, Young-Dae;Roh, Tae-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.31-41
    • /
    • 1998
  • Single fiber fragmentation technique was used to evaluate the change of interfacial properties by degradation of fiber tensile strength in the fiber reinforced composites. The influences of fiber tensile strength on the interfacial properties have been evaluated by the fragmentation specimens(weak fiber samples) of glass fiber/epoxy resin that was made using the pre-degraded glass fiber in distilled water at $80^{circ}C$ for specified periods. The effects of the immersion time on the interfacial properties in the distilled water at $80^{circ}C$ also have been evaluated by the fragmentation specimens(original fiber samples) of glass fiber/epoxy resin that was made using the received glass fiber. As the result, the tensile strength of glass fiber was decreased with the increasing of the treatment time in the distilled water at $80^{circ}C$ and the interfacial shear strength was independent of the change of the glass fiber strength in the single fiber fragmentation test. But in the durability test using the single fiber fragmentation specimen, interfacial shear strength decreased with the increasing of the immersion time in distilled water ar $80^{circ}C$. And it turned out that the evaluating of interfacial shear strength using original fiber tensile strength was valuable in the durability test for the water environment by the single fiber fragmentation technique.

  • PDF

Experimental research on seismic behavior of steel reinforced high-strength concrete short columns

  • Zhu, Weiqing;Jia, Jinqing;Zhang, Junguang
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.603-615
    • /
    • 2017
  • This experimental research presents the seismic performance of steel reinforced high-strength concrete (SRHC) short columns. Eleven SRHC column specimens were tested under simulated earthquake loading conditions, including six short column specimens and five normal column specimens. The parameters studied included the axial load level, stirrup details and shear span ratio. The failure modes, critical region length, energy dissipation capacity and deformation capacity, stiffness and strength degradation and shear displacement of SRHC short columns were analyzed in detail. The effects of the parameters on seismic performance were discussed. The test results showed that SRHC short columns exhibited shear-flexure failure characteristics. The critical region length of SRHC short columns could be taken as the whole column height, regardless of axial load level. In comparison to SRHC normal columns, SRHC short columns had weaker energy dissipation capacity and deformation capacity, and experienced faster stiffness degradation and strength degradation. The decrease in energy dissipation and deformation capacity due to the decreasing shear span ratio was more serious when the axial load level was higher. However, SRHC short columns confined by multiple stirrups might possess good seismic behavior with enough deformation capacity (ultimate drift ratio ${\geq}2.5%$), even though a relative large axial load ratio (= 0.38) and relative small structural steel ratio (= 3.58%) were used, and were suitable to be used in tall buildings in earthquake regions.

A Study of the Effect of Asperity Change on the Shear Strength of Joint Plane (절리면의 거칠기 변화가 전단강도에 미치는 영향)

  • Cho, Taechin;Suk, Jaewook;Lee, Jonggun
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.401-412
    • /
    • 2013
  • Multi-stage shear test has been performed using joint specimens of gneiss, granite and shale to investigate the influence of micro-scale asperity change on the shear strength of joint plane. For each shear test asperity degradation characteristics of joint specimens of different joint surface strength have been analyzed by utilizing the optimum asperity parameter which can reflect the sequential asperity degradation. Elevation of joint surface profile has been measured and both the changes of asperity parameters and micro-scale asperity distribution have been investigated. Two distinctive variation modes of cohesion and friction angle have been delineated and major cause of shear strength parameter change has been analyzed by considering the micro-scale asperity angle change resulting from the abrasion, fracturing and regeneration of micro-scale asperities. Effects of micro-scale asperity variation on the joint shear strength have been also investigated.

Degradation Characteristics of Eutectic and Pb-free Solder Joint of Electronics mounted for Automotive Engine (자동차 엔진룸용 전장품 유무연 솔더 접합부의 열화특성)

  • Kim, A Young;Hong, Won Sik
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.74-80
    • /
    • 2014
  • Due to environmental regulations (RoHS, WEEE and ELV) of the European Union, electronics and automotive electronics have to eliminate toxic substance from their devices and system. Especially, reliability issue of lead-free solder joint is increasing in car electronics due to ELV (End-of-Life Vehicle) banning from 2016. We have prepared engine control unit (ECU) modules soldered with Sn-40Pb and Sn-3.0Ag-0.5Cu (SAC305) solders, respectively. Degradation characteristics of solder joint strength were compared with various conditions of automobile environment such as cabin and engine room. Thermal cycle test (TC, $-40^{\circ}C$ ~ ($85^{\circ}C$ and $125^{\circ}C$), 1500 cycles) were conducted with automotive company standard. To compare shear strength degradation rate with eutectic and Pb-free solder alloy, we measured shear strength of chip components and its size from cabin and engine ECU modules. Based on the TC test results, finally, we have known the difference of degradation level with solder alloys and use environmental conditions. Solder joints degradation rate of engine room ECU is superior to cabin ECU due to large CTE (coefficient of thermal expansion) mismatch in field condition. Degradation rate of engine room ECU is 50~60% larger than cabin room electronics.

Shear Strength of Low-Strength RC Beams Strengthened with Glass Fiber Sheets (유리섬유쉬트로 전단보강된 저강도 RC보의 전단강도)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Do-Gyeum;Ryu, Gum-Sung;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.283-286
    • /
    • 2005
  • The effectiveness of shear strengthening with glass fiber sheets on normal or low strength RC beams have been investigated experimentally. A design compressive strength of concrete of 13.5MPa has been planned considering the degradation state of the existing structure to be strengthened in this study. Also, concrete surface reinforcing agent was applied to increase bond capacity between concrete and GFRP sheets in case of low strength RC beams. Comparing the test results of low and normal strength beams strengthened with GFRP sheets indicated that total shear capacity of beams was decreased with concrete strength decreased, but the shear strengthening capacity of GFRP sheets are hardly affected by concrete strength. In addition, shear strengthening effects of RC beams strengthened with GFRP sheets can be estimated by $\rho_w{\cdot}f_w$ based on the maximum effective strain of FRP sheet proposed by ACI 440.2R recommendation.

  • PDF

Seismic tests of RC shear walls confined with high-strength rectangular spiral reinforcement

  • Zhao, Huajing;Li, Qingning;Song, Can;Jiang, Haotian;Zhao, Jun
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • In order to improve the deformation capacity of the high-strength concrete shear wall, five high-strength concrete shear wall specimens confined with high-strength rectangular spiral reinforcement (HRSR) possessing different parameters, were designed in this paper. One specimen was only adopted high-strength rectangular spiral hoops in embedded columns, the rest of the four specimens were used high-strength rectangular spiral hoops in embedded columns, and high-strength spiral horizontal distribution reinforcement were used in the wall body. Pseudo-static test were carried out on high-strength concrete shear wall specimens confined with HRSR, to study the influence of the factors of longitudinal reinforcement ratio, hoop reinforcement form and the spiral stirrups outer the wall on the failure modes, failure mechanism, ductility, hysteresis characteristics, stiffness degradation and energy dissipation capacity of the shear wall. Results showed that using HRSR as hoops and transverse reinforcements could restrain concrete, slow load carrying capacity degeneration, improve the load carrying capacity and ductility of shear walls; under the vertical force, seismic performance of the RC shear wall with high axial compression ratio can be significantly improved through plastic hinge area or the whole body of the shear wall equipped with outer HRSR.