• 제목/요약/키워드: shear strain rate

검색결과 205건 처리시간 0.023초

소성변형의 분자론 (제1보). 이론 (Molecular Theory of Plastic Deformation (I). Theory)

  • 김창홍;이태규
    • 대한화학회지
    • /
    • 제21권5호
    • /
    • pp.330-338
    • /
    • 1977
  • 고체의 소성변형을 설명하기 위하여 다음과 같은 가정을 하였다. (1) 고체의 소성변형은 크게 두 가지 기구 즉 dislocation 운동과 grain boundary 운동에 의하여 일어난다. (2) Dislocation 운동에 있어서 유동 단위들은 역학적 모형으로 나타내면 다종의 Maxwell 단위들의 평행연결형으로 되고 grain boundary 유동단위들도 다종의 Maxwell 단위들의 평행연결로 표현된다. 이를 물리적으로 설명하면 같은 부류의 유동단위들은 모두 같은 shear plane에서 같은 shear rate로 흐름을 의미한다. (3) Grain boundary 유동단위들과 dislocation 유동단위들 같은 서로 직렬 연결되어 있다. 이는 물리적으로 고체내에서 stress는 균일하게 작용하나 shear rate는 shear plane 의 종류(dislocation 운동면과 grain boundary 운동면)에 따라 달리 나타남을 의미한다. (4) Dislocation 유동단위들과 grain boundary 운동단위들의 운동은 그들의 흐름을 방해하는 장애물 근방의 원자 또는 분자들이 확산해 나가므로써 가능하게 된다. 이러한 가정하에 반응속도론을 적용하여 shear rate와 shear stress를 구하는 일반식을 도출하였다. 본 연구에서는 실제로 중요한 네가지 경우에 대하여 상기 도출한 일반식을 고찰하였다.

  • PDF

적층복합재의 자유단 박리에 대한 모드별 스트레인 에너지해방률의 간이계산법 (A Simplified Method for Determining Modal Strain Energy Release Rate of Free-Edge Delaminations in Laminated Composite)

  • 김택현;오택열;김인권
    • 대한기계학회논문집A
    • /
    • 제21권3호
    • /
    • pp.423-429
    • /
    • 1997
  • A simplified method for determining the mode components of the strain energy release rate of free-edge delaminations in laminated composite is proposed. The interlaminar stresses are evaluated as an interface moment and interface shear forces that are obtained from the equilibrium equations at the interface between the adjacent layers. Deformation of an edge-delaminated laminate is calculated by using a generalized quasi-three dimensional classical laminated plate theory developed by the authors. The analysis provides closed-form expression for the three components of the strain energy release rate. Comparison of results with a finite element solution using the virtual crack closure technique shows good agreement. In the present study, laminated composite with stacking sequences of [30/-30/90]$_{s}$ were examined. The simple nature of the method makes it suitable for primary design analysis for the delaminations of laminated composite.e.

그라우트 주입률 변화에 따른 전단탄성계수 평가 (Evaluation of Shear Elastic Modulus by Changing Injection Ratio of Grout)

  • 백승철;이준대;안광국
    • 한국지반환경공학회 논문집
    • /
    • 제14권2호
    • /
    • pp.51-55
    • /
    • 2013
  • 연약지반을 개량하기 위한 심층혼합처리공법과 같은 다양한 공법은 지반보강을 위하여 그라우트를 광범위하게 사용하고 있다. 반복하중 및 동하중을 받는 지반-구조물계의 설계에 사용되는 중요한 동적변수는 사질토 및 화강풍화토, 암시편에 관하여 많이 연구 발표되었다. 하지만 그라우트로 보강된 지반에 대한 내진설계 연구는 미비한 실정이다. 이에 본 연구에서는 공진주시험기를 이용하여 점성토와 보통 포틀랜드 시멘트의 함수비와 그라우트 주입률의 변화에 따른 전단변형률과 전단탄성계수의 상관관계를 Ramberg-Osgood Model로 정규화하여 비교 분석하였다. 그 결과 동적계수는 함수비와 그라우트 주입율에 의해 영향을 받는 것으로 나타났다.

탄소나노튜브 인솔 착용에 따른 드롭 착지 동작의 생체역학적 분석 (Biomechanical Analysis of Wearing Carbon Nanotube-Based Insole during Drop Landing)

  • 채원식;정재후;이행섭
    • 한국운동역학회지
    • /
    • 제22권4호
    • /
    • pp.429-435
    • /
    • 2012
  • The purpose of this study was to determine the biomechanical effect of wearing carbon nanotube-based insole on cushioning and muscle tuning during drop landing. Twenty male university students(age: $21.2{\pm}1.5yrs$, height: $175.4{\pm}4.7cm$, weight: $70.2{\pm}5.8kg$) who have no musculoskeletal disorder were recruited as the subjects. Average axial strain, average shear strain, inversion angle, linear velocity, angular velocity, vertical GRF and loading rate were determined for each trial. For each dependent variable, a one-way analysis of variance(ANOVA) with repeated measures was performed to test if significant difference existed among different three conditions(p<.05). The results showed that Average axial strain of line 4 was significantly less in CNT compared with EVA and PU during IP phase. The average shear strain was less in CNT compared with EVA and PU during other phases. The inversion angle was increased in CNT compared with EVA and PU during all phase. In linear velocity, angular velocity, vertical GRF and loading rate, there were no significant difference between the three groups. This result seems that fine particle of carbon nanotube couldn't make geometric form which can absolve impact force by increasing density through eliminating voids of forms. Thus, searching for methods that keep voids of forms may play a pivotal role in developing of insole. This has led to suggestions of the need for further biomechanical analysis to these factors.

Numerical analysis of offshore monopile during repetitive lateral loading

  • Chong, Song-Hun;Shin, Ho-Sung;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제19권1호
    • /
    • pp.79-91
    • /
    • 2019
  • Renewed interest in the long-term pile foundations has been driven by the increase in offshore wind turbine installation to generate renewable energy. A monopile subjected to repetitive loads experiences an evolution of displacements, pile rotation, and stress redistribution along the embedded portion of the pile. However, it is not fully understood how the embedded pile interacts with the surrounding soil elements based on different pile geometries. This study investigates the long-term soil response around offshore monopiles using finite element method. The semi-empirical numerical approach is adopted to account for the fundamental features of volumetric strain (terminal void ratio) and shear strain (shakedown and ratcheting), the strain accumulation rate, and stress obliquity. The model is tested with different strain boundary conditions and stress obliquity by relaxing four model parameters. The parametric study includes pile diameter, embedded length, and moment arm distance from the surface. Numerical results indicate that different pile geometries produce a distinct evolution of lateral displacement and stress. In particular, the repetitive lateral load increases the global lateral load resistance. Further analysis provides insight into the propagation of the shear localization from the pile tip to the ground surface.

Comparison of interpretation methods for large amplitude oscillatory shear response

  • Kim Hyung-Sup;Hyun Kyu;Kim Dae-Jin;Cho Kwang-Soo
    • Korea-Australia Rheology Journal
    • /
    • 제18권2호
    • /
    • pp.91-98
    • /
    • 2006
  • We compare FT (Fourier Transform) and SD (Stress Decomposition), the interpretation methods for LAOS (Large Amplitude Oscillatory Shear). Although the two methods are equivalent in mathematics. they are significantly different in numerical procedures. Precision of FT greatly depends on sampling rate and length of data because FT of experimental data is the discrete version of Fourier integral theorem. FT inevitably involves unnecessary frequencies which must not appear in LAOS. On the other hand, SD is free from the problems from which FT suffers, because SD involves only odd harmonics of primary frequency. SD is based on two axioms on shear stress: [1] shear stress is a sufficiently smooth function of strain and its time derivatives; [2] shear stress satisfies macroscopic time-reversal symmetry. In this paper, we compared numerical aspects of the two interpretation methods for LAOS.

Mathematical Properties of the Differential Pom-Pom Model

  • Kwon, Youngdon
    • Macromolecular Research
    • /
    • 제9권3호
    • /
    • pp.164-170
    • /
    • 2001
  • Recently in order to describe the complex rheological behavior of polymer melts with long side branches like low density polyethylene, new constitutive equations called the pom-pom equations have been derived by McLeish and Larson on the basis of the reptation dynamics with simplified branch structure taken into account. In this study mathematical stability analysis under short and high frequency wave disturbances has been performed for the simplified differential version of these constitutive equations. It is proved that they are globally Hadamard stable except for the case of maximum constant backbone stretch (λ = q) with arm withdrawal s$\_$c/ neglected, as long as the orientation tensor remains positive definite or the smooth strain history in the now is previously given. However this model is dissipative unstable, since the steady shear How curves exhibit non-monotonic dependence on shear rate. This type of instability corresponds to the nonlinear instability in simple shear flow under finite amplitude disturbances. Additionally in the flow regime of creep shear flow where the applied constant shear stress exceeds the maximum achievable value in the steady now curves, the constitutive equations will possibly violate the positive definiteness of the orientation tensor and thus become Hadamard unstable.

  • PDF

압축시험에서의 배럴링 및 소성발열 직접 측정에 의한 Nimonic 80A 합금의 응력-변형률 선도 보정 (Correcting Stress-Strain Curves of Nimonic 80A Alloy based on Direct Measurement of Barreling and Heat Generation)

  • 강성훈;정희원;이호원;김세종;오영석;정재면;오세혁;김호혁
    • 소성∙가공
    • /
    • 제32권4호
    • /
    • pp.215-220
    • /
    • 2023
  • In this study, the correction process of stress-strain curves obtained from hot compression test is introduced since the barreling induced by friction and adiabatic heat generation induced by plastic work occur under high strain rate. A shear friction factor was quantitatively estimated by measuring the dimension of barreling and temperature rise due to adiabatic heat generation was directly measured during compression test. Thereafter, the stress-strain curves were re-evaluated by introducing several equations to correct the effects of the friction and temperature rise. It was found that adiabatic factor at strain rate of 10/s is in the range of about 0.5 to 0.75 for Nimonic 80A and decreases as the assigned temperature increases.

굴패각 혼합토의 비배수 전단강도 특성 (The Undrained Shear Strength Characteristics of Mixed Soil with Oyster Shells)

  • 송영진;김기영;문홍득
    • 한국지반공학회논문집
    • /
    • 제19권6호
    • /
    • pp.7-14
    • /
    • 2003
  • 본 연구에서는 굴패각 혼합토의 전단강도 특성을 파악하고자 해성토에 굴패각 혼합율 0%, 25% 그리고 50%로 달리 한 후 $K_o$ 비배수 삼축압축 실험을 실시하였다. 또한 각 혼합비에 따라 유효 연직압을 200kPa, 300kPa 그리고 400kPa로 적용하였고, 유효 연직압 300kPa에 대해서 전단속도를 세가지로 달리하여 그에 따른 혼합토의 전단강도 특성을 알아보았다. 일련의 실험결과로부터 굴패각 혼합비가 증가할수록 굴패각 입자의 파쇄로 인해 전단강도가 증가함을 볼 수 있었으며, 전단속도는 굴패각 혼합토의 전단강도에 큰 영향을 미치지 못함을 확인하였다. 굴패각 혼합토의 실내실험과 Mayne, Bishop의 경험식을 토대로 비교 분석한 결과 비배수 전단강도는 실험값과 비슷한 경향을 나타내고 있다. 그러나 간극수압계수 예측은 혼합비 0%에서 경험식이 실험값과 보다 과대 평가를 보이고 있다.

Ni계 초내열합금 NIMONIC 80A의 고온변형거동 (High Temperature Deformation Behavior of a NIMONIC 80A Ni-based Superalloy)

  • 하민철;황시우;김종수;김철유;박경태
    • 소성∙가공
    • /
    • 제22권5호
    • /
    • pp.258-263
    • /
    • 2013
  • The deformation behavior of NIMONIC 80A was studied in the high temperature range of $900{\sim}1200^{\circ}C$ and for strain rates varying between 0.02 and $20s^{-1}$ via the hot compression test. Processing maps for hot working were constructed on the basis of the power dissipation efficiency using a dynamic material model. The results showed that the strength during hot compression increased with increasing strain rate and decreasing temperature. At low strains, the processing map of NIMONIC 80A did not reveal any instability domain regardless of the strain rate and temperature. However, at high strains, the processing map exhibited an instability domain at a low strain rate of $0.2s^{-1}$ and within a temperature range of $900{\sim}960^{\circ}C$. In the instability domain, the deformed microstructure exhibited shear bands and carbide precipitation while, in the safe domain, full recrystallization occurred.