• Title/Summary/Keyword: shear strain rate

Search Result 204, Processing Time 0.024 seconds

A Study on the Nonlinear Analysis of R/C Frames Structures subjected to Static Loads (철근콘크리트뼈대 구조물의 정적 비선형 해석에 관한 연구)

  • 심종성;조민수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.196-201
    • /
    • 1992
  • The purpose of this study is to develop the computer software for the nonlinear analysis of R/C frame structure under static loads. For this purpose, strain-rate dependant material model and physical element model considering both flexural and shear deformation are adopted and they are connected with 'TWO-D'which is commerical software for elastic structural analysis. The analytical results using the developed software are compared to the experiment results and they are generally satisfactory.

  • PDF

Measurement and Analysis of the Material Behavior of Corrugated Paperboard for Finite Element Analysis (유한요소해석을 위한 골판지 소재의 물성측정 및 분석)

  • Gyu-Yeol Kang;Duk-Geun Bae;Sun-Jong, Noh;Sim-Won Chin;Woo-Jong Kang
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.143-149
    • /
    • 2024
  • This paper measures the mechanical properties of corrugated cardboard, an eco-friendly packaging material, and applies these measurements to the MAT_PAPER model in LS-DYNA for finite element analysis. Although MAT_PAPER is primarily designed for modeling the behavior of paper, this research demonstrates its applicability to corrugated cardboard as well. Tensile, compression, and shear behaviors of a corrugated cardboard were measured and analyzed, and based on these results, six yield surfaces were derived and integrated into the MAT_PAPER model. By comparing the finite element analysis of the material tests and the low velocity collapse analysis of the corrugated cardboard square boxes with each experimental results, it was shown that the behavior of corrugated cardboard could be equivalently considered well by the MAT_PAPER model. However, since the model is not rate-dependent, the high strain rate properties of liner materials were measured and used for strain rate correction. Consequently, this matches well with the results of the high-speed compression tests of the corrugated cardboard square boxes.

A Study on Physical Behavior Property of R/C Beams Strengthened with Bonding Methods (보강재의 부착방법의 따른 물리적 거동 특성에 관한 연구)

  • 한만엽;백승덕
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.727-732
    • /
    • 1999
  • In this research, we made an experiment on the 10 specimen beams that we made. The specimen beams consist of 4 steel plate strengthening beams and 5 carbon fiber sheet strengthening beams. We applied the methods of notch, rounding off a edge, anchor bolt and side shear strengening to the steel plate and for the case of carbon fiber sheet, we applied the methods of anchor bolt, line anchor and shear strengthening. After all the cases were applied, the beams was measured and analyzed about the behavior property of strengthened beams, th ability of strengthening method, the relation between load and the shape of failure, the crack load, the yield load, the shape of crack pattern, the increasing rate from yield load and maximum load and the strain of rebar. All the strengthening methods resulted in almost same value until the yield load, and it wasn't quite different from the theoretical value. In comparison with existing method, the SER, SEAS for the steel plate and the CEA, CESS, CCESS for carbon fiber sheet showed the increasement of ductility with big displacement.

  • PDF

Shear Damage Behavior of Reinforced Concrete Beams under Repetitive Fatigue Loadings (반복하중을 받는 철근콘크리트보의 전단피로손상거동)

  • Oh, Byung-Hwan; Han, Seung-Hwan;Yoo, Young;Cho, Jae-Yeol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.633-638
    • /
    • 1997
  • This study was performed to investigate the fatigue behaviour and fatigue damage process of RC structures under repeated load. Especially, the behavior of RC beams subjected to flexure-shear force has been focused. The test results show that the deflections of beam and the strains of longitudinal steels and stirrups under cyclic loads increase with constant rate, and these increases depend on diagonal crack openings and strain increases. The present study provides useful data for the analysis of damage accumulation of reinforced concrete beams under repeated loadings.

  • PDF

Reliability Estimation of Ball Grid Array 63Sn-37Pb Solder Joint (Ball Grid Array 63Sn-37Pb Solder joint 의 건전성 평가)

  • 명노훈;이억섭;김동혁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.630-633
    • /
    • 2004
  • Generally, component and FR-4 board are connected by solder joint. Because material properties of components and FR-4 board are different, component and FR-4 board show different coefficients of thermal expansion (CTE) and thus strains in component and board are different when they are heated. That is, the differences in CTE of component and FR-4 board cause the dissimilarity in shear strain and BGA solder joint s failure. The first order Taylor series expansion of the limit state function incorporating with thermal fatigue models is used in order to estimate the failure probability of solder joints under heated condition. A model based on plastic-strain rate such as the Coffin-Manson Fatigue Model is utilized in this study. The effects of random variables such as frequency, maximum temperature, and temperature variations on the failure probability of the BGA solder joint are systematically investigated by using a failure probability model with the first order reliability method(FORM).

  • PDF

Assessment of Forming Defects in Hot Backward Extruded Ti-6Al-4V Tubes using Dynamic Materials Model (동적재료모델을 활용한 열간 후방압출된 Ti-6Al-4V튜브의 성형결함 해석)

  • 염종택;심인규;박노광;홍성석;심인옥
    • Transactions of Materials Processing
    • /
    • v.12 no.6
    • /
    • pp.566-571
    • /
    • 2003
  • The metal forming behavior and defect formation in Ti-6Al-4V tube during hot backward extrusion were investigated. Dynamic material model(DMM) including Ziegler's instability criterion was employed to predict the forming defects such as shear band, inner and/or surface cracks. This approach was coupled to the internal variables generated from FE analysis. The simulation results fur the backward extrusion were compared with the experimental observation. The chilling effect and friction indicated a great influence on the deformation mode of the tube and the formation of surface cracks. The formation of forming defects in the extruded tube was attributed to non-uniform distribution of strain, strain rate and temperatures in the extruded tubes for the given test conditions.

Shear Behavior of Sands Depending on Shear Box Type in Direct Shear Test (직접전단실험시 전단상자의 종류에 따른 모래시료의 전단거동)

  • Hong, Young-Ho;Byun, Yong-Hoon;Chae, Jong-Gil;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.51-62
    • /
    • 2015
  • Shear behavior obtained by direct shear tests is dependent on shear box and boundary condition. The objective of this study is to analyze problems of conventional direct shear test (type-A) and provide the reliable results by developing type-C direct shear apparatus. Experimental tests are carried out for Ulleung sand by using type-A and -C direct shear devices. The soil specimens, which are prepared at the relative density of 60%, and are applied to vertical confining stresses of 50, 100, 200, 300, and 400 kPa, are sheared at a constant shear strain rate of 0.5 mm/min. By comparing the results obtained by type-A and -C direct shear apparatus under constant normal load (CNL) condition, the performance of new one is verified. In addition, two constrained conditions including constant normal load (CNL) and constant pressure (CP) are applied to type-C one. Experimental results show that type-A direct shear apparatus has some problems such as rotating of loading plate and upper shear box, and the frictional forces between soil and inner wall of upper shear box. Thus, the shear strengths obtained by type-A device are overestimated or underestimated depending on shear box and boundary condition. On the other hand, type-C device produces clear and consistent test results regardless of constrained conditions. This study represents that type-C direct shear apparatus not only can solve the problems of type-A direct shear apparatus but provide the reliable results.

A Study on the Parameter Determination of Crustal Movement by Geodetic Technique (측지학적 방법에 의한 지각변동 매개변수 결정에 관한 연구)

  • 조규전;정의환
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.4
    • /
    • pp.405-414
    • /
    • 2001
  • Plate tectonics is a dominant paradigm in modern geophysics. Because of its geological mechanism, Korea has a possibility of earthquake according to plate motion. Besides the disaster of earthquake grows rapidly, the importance of recognition for earthquake has been emphasized. This study attempts to decide crustal movement parameters with GPS data, analysed baseline after processing data with GIPSY-OASIS II S/W, observed from 6 stations in and around the Korean peninsula, and obtained from selected 11 stations in Korea. As a results, maximum shear strain was $0.04{\mu}/yr$ and the mean azimuth of the maximum compression axes$(A_{z2})$ is estimated as $97.75^{\circ}$ in and around the Korean peninsula. The average rate of the maximum shear strain($({\gamma}_max)$) is $0.17{\mu}/yr$. The mean azimuth of the maximum compression axes$(A_{z2})$ is estimated as $70.25^{\circ}$ in Korea. Such a pattern of strain distribution is harmonious with that of seismic activity in Korea both historically as well as today.

  • PDF

A Study of Static and Dynamic Deformation Behaviors of SCM415 steel on the Change of Spherodization of Cementite (SCM415강의 정적 및 동적 변형거동에 미치는 탄화물 구상화율 변화에 관한 연구)

  • Kim, Heon-Joo;Lim, Jong-Min
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.6
    • /
    • pp.327-335
    • /
    • 2004
  • Effect of spherodization of cementite on static and dynamic deformation behaviors of SCM415 steels was investigated in this study. Dynamic torsional test was conducted using torsional Kolsky bar with the strain rate of $1.6{\times}10^3/s$. Three type of specimens were used with different spherodization degree of cementite. Dynamic test results were analyzed comparing with static tensile results and microstructural changes. The obtained results are as follows; 1) All the specimens of static and dynamic tests showed a ductile fracture mode of dimple. Specimens of the dynamic test showed adiabatic shear bands on the beneath of fracture surface. 2) In static tensile test, decreased tensile strength and increased uniform and non-uniform elongations appeared as spherodization degree of cementite increased. 3) In dynamic torsional test, decreased shear strength and increased uniform elongation appeared as spherodization degree of cementite increased. 4) Due to the largest uniform elongation, superior cold forgeability at high speed is expected on high spherodization degree of cementite.

Mechanical and Electrical Characteristics of Concrete Members Enlarged with Self-Sensing Cementitious Materials for Repair (자기감지형 보수재로 단면증타된 콘크리트 부재의 역학 및 전기적 특성 )

  • Gun-Cheol Lee;Geon-Woo Im;Chang-Min Lee;Sung-Won Hong;Young-Min Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.139-146
    • /
    • 2023
  • In this study, compressive strength and adhesion strength were measured as repair materials to evaluate the mechanical and electrical properties of compression and shear specimens with self-sensing repair materials. As a result of the experiment, the strength improvement rate of the compression test specimen was higher than the section enlargement area ratio, but the shear test specimen did not show an improvement in strength as much as the section enlargement area ratio. Compression experiments under load showed high correlation between FCR-Strain and FCR-Stress, confirming self-sensing performance. However, the shear test did not show as much correlation as the compression test. Accordingly, it is judged that the self-sensing repair material is suitable for the compression member on which the compression load acts in the building.