• Title/Summary/Keyword: shear reinforcement

Search Result 1,276, Processing Time 0.022 seconds

Strength of Interior Post-Tensioned Flat Plate Slab-Column Connection based on Failure Mechanism (파괴 메커니즘을 고려한 내부 포스트텐션 플랫 플레이트 슬래브-기둥 접합부의 강도식 평가)

  • Kim, Min-Nam;Ha, Sang-Su;Lee, Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.126-129
    • /
    • 2006
  • A bending moment $M_u$ transferred at slab-column connection is resisted at the slab critical section by flexure and shear. The ACI 318-05 Building Code(1) gives an empirical equation for the fraction ${\gamma}_{\upsilon}$ of the moment $M_u$ to be transferred by shear at the slab critical section at d/2 from the column face and also the effective wide(c+3h). The equation is based on tests of interior slab-column connections without shear reinforcement. In order to investigate the data eight test specimens were examined. The test shows that increased slab load substantially reduces both the unbalanced moment capacity and the lateral drift capacity of the connection. Especially, the specimens with the bottom reinforcement existence and nonexistence, appears remarkable differences. Studies also show that the code equation for ${\gamma}_{\upsilon}$ does not apply to all cases. The purpose of this study is to compare the test results with present ACI 318-05 Building Code provisions for design of slab-column connections and with the analysis of the experimental data for a new limitation of strength equation without shear reinforcement and bottom reinforcement.

  • PDF

Seismic design of beam-column joints in RC moment resisting frames - Review of codes

  • Uma, S.R.;Jain, Sudhir K.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.579-597
    • /
    • 2006
  • The behaviour of reinforced concrete moment resisting frame structures in recent earthquakes all over the world has highlighted the consequences of poor performance of beam column joints. Large amount of research carried out to understand the complex mechanisms and safe behaviour of beam column joints has gone into code recommendations. This paper presents critical review of recommendations of well established codes regarding design and detailing aspects of beam column joints. The codes of practice considered are ACI 318M-02, NZS 3101: Part 1:1995 and the Eurocode 8 of EN 1998-1:2003. All three codes aim to satisfy the bond and shear requirements within the joint. It is observed that ACI 318M-02 requires smaller column depth as compared to the other two codes based on the anchorage conditions. NZS 3101:1995 and EN 1998-1:2003 consider the shear stress level to obtain the required stirrup reinforcement whereas ACI 318M-02 provides stirrup reinforcement to retain the axial load capacity of column by confinement. Significant factors influencing the design of beam-column joints are identified and the effect of their variations on design parameters is compared. The variation in the requirements of shear reinforcement is substantial among the three codes.

Nonlinear Dynamic Properties of Fiber Reinforced Soils (섬유혼합토의 비선형 동적물성치)

  • 박철수;황선근;목영진
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.189-197
    • /
    • 2003
  • In this paper, deformation characteristics of fiber-mixed-soils were studied at small strain range(0.0001%~1%) using resonant column test and triaxial test, and reinforcement effect was evaluated by the measure of maximum shear moduli. The effects of the major parameters such as fiber content, aspect ratio and fiber type on reinforcement were comparatively assessed. The specimens were remolded from Jumunjin Sand randomly mixed with discrete polypropylene staple fibers. Maximum shear moduli of fiber-mixed-soils increased by up to 30% and modulus reduction was also restrained in nonlinear range. Shear moduli increased as the aspect ratio increases. The reinforcement was more effective with fibrillated fiber than with monofilament fiber. The most effective reinforcement was achieved with the specimen of 0.3 % fiber content.

Parametric studies on punching shear behavior of RC flat slabs without shear reinforcement

  • Elsamak, Galal;Fayed, Sabry
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.355-367
    • /
    • 2020
  • This paper proposed a numerical investigation based on finite elements analysis (FEA) in order to study the punching shear behavior of reinforced concrete (RC) flat slabs using ABAQUS and SAP2000 programs. Firstly, the concrete and the steel reinforcements were modeled by hexahedral 3D solid and linear elements respectively, and the nonlinearity of the used materials was considered. In order to validate this model, experimental results considered in literature were compared with the proposed FE model. After validation, a parametric study was performed. The parameters include the slab thickness, the flexure reinforcement ratios and the axial membrane loads. Then, to reduce the time of FEA, a simplified modelling using 3D layered shell element and shear hinge concept was also induced. The effect of the footings settlement was studied using the proposed simplified nonlinear model as a case study. Results of numerical models showed that increase of the slab thickness by 185.7% enhanced the ultimate load by 439.1%, accompanied with a brittle punching failure. The punching failure occurred in one of the tested specimens when the tensile reinforcement ratio increased more than 0.65% and the punching capacity improved with increasing the horizontal flexural reinforcement; it decreased by 30% with the settlement of the outer footings.

The Effect of Anchorage with Shear Reinforcement in Flat Plate System (플랫 플레이트 구조에서 전단보강체의 정착성능에 따른 전단보강효과)

  • Choi, Chang-Sik;Bae, Baek-Il;Choi, Yun-Cheul;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.667-675
    • /
    • 2012
  • Flat plate are being used more in buildings requiring a high level of technical installations or in buildings needing changeable room arrangements during their life time such as office buildings. The main problem in flat plate is its weak resistance against a punching failure at its slab-column connections. Therefore, in this research, an experimental study on full-scale interior slab-column connection was performed. Three types of shear reinforcements were tested to prevent brittle punching shear failure that could lead to collapse of the structure. A series of four flat plate specimens including a specimen without shear reinforcement and three specimens with shear reinforcements were tested. The slabs were tested up to failure using monotonic vertical shear loading. The presences of the shear reinforcements substantially increased punching shear capacity and ductility of the interior slabcolumn connections. The test results showed that a slab that did not have enough bond length failed before shear reinforcement yielded due to anchorage slip. Also, FEM analyses were performed to study an effect of slab thickness and concrete compressive strength on the flat plate slab. The analytical study results were used to propose a method to calculate performance capacity of shear reinforcement in slab-column connection.

An Experimental Study on Shear Strength of Girder Ledge of Precast Girder-Beam Connection (프리캐스트 Girder-Beam 접합부에서 Girder Ledge의 전단내력에 관한 실험적 연구)

  • 배준우;박성무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.408-415
    • /
    • 1996
  • This study is aimed to define the behavior of the girder ledge of precast girder-beam joint in rame type precast concrete construction method. The variable of this study is followed : 1) The change of the maximum shear strength depended on the transformation of concrete compressive strength 2) The change of the behavior of ledge depended on the transformation of shear-span ratio 3) The change of maximum shear strength and ductility by the type of reinforcement. The results of this study show the behavior of ledge is affected by shear-span ratio and the maximum shear strength is depended on the concrete compressive strength, reinforcement ratio and effective section area. In addition, through the investigation of the established study, the results of this study suggest the shear friction formula of Raths.

  • PDF

Development of A New Truss Model for RC Beams without Web Reinforcement (전단보강철근이 없는 RC보의 트러스 해석기법 연구)

  • Kim, Jee-Hoon;Jeong, Jae-Pyong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1109-1114
    • /
    • 2001
  • This paper describes an attempt to develop a new truss model for reinforced concrete beams failing in shear based on a rational behavioral model. The key idea incorporated with truss model is the internal force state factor which is able to express global state of internal force flow in cracked reinforced concrete beams subjected to shear and bending. A new truss model using internal force state factor may provide a comprehensive result of shear strength in reinforced concrete beams without web reinforcement.

  • PDF

Predictoin of Longitudinal Steel Tension for Shear-Critical Reinforced Concrete Beams with Stirrups (전단이 지배하는 철근콘크리트 보의 주철근 인장력 산정)

  • Rhee, Chang-Shin;Byun, Su-Min;Shin, Geun-Ok;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.374-377
    • /
    • 2006
  • The measured longitudinal reinforcement tensions in the shear-critical RC beams were significantly higher than the calculated values by the beam theory. This may be attributed to the reduction of the internal-moment arm length by the development of the arch action. In this paper, the measured longitudinal reinforcement tensions in the test performed by Kim were compared with those predicted by the new truss model on the basis of the compatibility condition of the shear deformation.

  • PDF

A Study on the Shear Charactersitics for Synthetics Fiber Reinformcements Soils (섬유보강토의 전단특성에 관한 연구)

  • 송창섭;임성윤;이용범
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.582-587
    • /
    • 1999
  • This study has been done to investigate the characteristics of synthetic fiber reinforcement sol with fully satruated . To this end, consolidated undrained triaxial test was performed on synthetic fiber reinforcement soil using the soft clay and plypropylene fiber . From the results of test, it was formed that the mixing ratio for weight and the aspect ratio of synthetic fiber have an effect on the shear characteristic of synthetic fiber rinforcement soil. Especially shear paramter C has line relationship for mixing ratio of fiber, and øhas parabolic relationship for mixing ratio of fiber.

  • PDF

Evaluation of Shear Capacity According to Transverse Spacing of Wide Beam Shear Reinforced with Steel Plate with Openings (유공형 강판으로 전단보강된 넓은 보에서의 횡방향 보강 간격에 따른 전단성능 평가)

  • Choi, Jin Woong;Kim, Min Sook;Choi, Bong-Seob;Lee, Young Hak;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.259-266
    • /
    • 2015
  • In this paper, transverse shear spacing and effective depth of wide beams were considered as parameters to evaluate the shear capacity of wide beam according to transverse spacing of steel plates with openings in experimental way. The eight specimens were composed of: five specimens of shear reinforced by steel plates with openings and three non-reinforced specimens. Crack, failure mode, strain and load-displacement curve of specimens were analysed. Shear contribution of shear reinforcement is evaluated and maximum transverse spacing of shear reinforcement was proposed. Shear strength of the specimen that reinforced with three stirrup legs was higher than shear strength of the specimen that reinforced with two stirrup legs. And as the effective depth increased, shear strength was increased.