• Title/Summary/Keyword: shear modulus reduction curve

Search Result 17, Processing Time 0.022 seconds

A Suggestion of an Empirical Equation for Shear Modulus Reduction Curve Estimation of Sandy Soils (사질토 전단탄성계수 감소곡선 산정을 위한 경험식 제안)

  • Park, Dug-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.126-126
    • /
    • 2002
  • In dynamic analyses such as seismic ground response and soil-structure interaction problems, it is very crucial to obtain accurate dynamic shear modulus of soil deposit. In this study, an extensive data base of available experimental data is compiled and reanalyzed to establish a simple empirical formula for the dynamic shear modulus reduction curve to cover wide range of strain for sandy soils. The proposed empirical equation is to represent the dynamic shear modulus degradation with strain in terms of low-amplitude dynamic shear modulus and effective mean confining Pressure, since those factors have the most significant effect on the Position and shape of the shear modulus reduction curve for nonelastic soils. If low-amplitude shear modulus is measured, degraded modulus at any shear strain amplitude can be calculated using the proposed equation.

A Suggestion of an Empirical Equation for Shear Modulus Reduction Curve Estimation of Sandy Soils (사질토 전단탄성계수 감소곡선 산정을 위한 경험식 제안)

  • Park, Dug-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.127-138
    • /
    • 2002
  • In dynamic analyses such as seismic ground response and soil-structure interaction problems, it is very crucial to obtain accurate dynamic shear modulus of soil deposit. In this study, an extensive data base of available experimental data is compiled and reanalyzed to establish a simple empirical formula for the dynamic shear modulus reduction curve to cover wide range of strain for sandy soils. The proposed empirical equation is to represent the dynamic shear modulus degradation with strain in terms of low-amplitude dynamic shear modulus and effective mean confining Pressure, since those factors have the most significant effect on the Position and shape of the shear modulus reduction curve for nonelastic soils. If low-amplitude shear modulus is measured, degraded modulus at any shear strain amplitude can be calculated using the proposed equation.

A study of dynamic peoperties in cyclic simple shear test (동적단순전단 시험기를 이용한 매립지반 거동특성에 관한 연구)

  • Kim, Sung-Jin;Ryu, Jeong-Ho;Park, Yo-Hwan;Kim, Jin-Man
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1422-1430
    • /
    • 2008
  • Cyclic simple shear test apparatus was used to investigate the dynamic response of liquefiable soils as reclamation material. The specimen were reclamation using simple air-pluviation method. The confining stress was applied the range of 100 kpa to 200 kpa. The resulted strain was in the range of $10^{-3}$ ~ 5 %. Based on these test results modulus reduction curve, damping curve and cyclic strength curve were developed. The developed curves were compared to those already available in literature. The obtained curves can be applied to FEM or equivalent linear analysis such as SHAKE for ground response analysis.

  • PDF

Dynamic Deformation Properties of Coarse Granular Materials with Respect to Gradation Characteristics (조립재료의 입도특성에 따른 동적 변형특성 평가)

  • Ha, Ik-Soo;Kim, Nam-Ryong
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.5-14
    • /
    • 2013
  • Coarse granular geomaterials containing large gravels are broadly used for construction of large geotechnical systems such as dams, levees, railways and backfills. It is necessary to evaluate deformation characteristics of these materials for dynamic analysis, e.g. seismic design. This study presents evaluation of dynamic deformation characteristics of coarse materials using large scale resonant column testing apparatus, which uses specimens with 200 mm in diameter and 400 mm in height, and the effects of gradation characteristics on maximum shear modulus, shear modulus reduction curve and damping characteristics were investigated. From experimental study using rock-fill materials for a dam, we could see that the largest or mean particle size affects the shape of shear modulus reduction curve. When the specimens are prepared under the same conditions for maximum particle size, the coefficient of uniformity affects the confining stress exponent of maximum shear modulus. It could be concluded that the maximum particle size is an factor which affects shear modulus reduction curve, and that the coefficient of uniformity is for small strain shear modulus, especially for the sensitivity to confining stress.

Dynamic shear modulus and damping ratio of saturated soft clay under the seismic loading

  • Zhen-Dong Cui;Long-Ji Zhang;Zhi-Xiang Zhan
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.411-426
    • /
    • 2023
  • Soft clay is widely distributed in the southeast coastal areas of China. Many large underground structures, such as subway stations and underground pipe corridors, are shallow buried in the soft clay foundation, so the dynamic characteristics of the soft clay must be considered to the seismic design of underground structures. In this paper, the dynamic characteristics of saturated soft clay in Shanghai under the bidirectional excitation for earthquake loading are studied by dynamic triaxial tests, comparing the backbone curve and hysteretic curve of the saturated soft clay under different confining pressures with those under different vibration frequencies. Considering the coupling effects of the confining pressure and the vibration frequency, a fitting model of the maximum dynamic shear modulus was proposed by the multiple linear regression method. The M-D model was used to fit the variations of the dynamic shear modulus ratio with the shear strain. Based on the Chen model and the Park model, the effects of the consolidation confining pressure and the vibration frequency on the damping ratio were studied. The results can provide a reference to the earthquake prevention and disaster reduction in soft clay area.

Proposal of Predictive Equations of Normalized Shear Modulus and Damping Ratio Curves for Loose Medium Sand Reinforced by Vinyl Strip-cement (비닐스트립-시멘트로 보강된 느슨한 중간 모래의 정규화 전단탄성계수 및 감쇠비 곡선 산정식 제안)

  • Kim, Jong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.33-45
    • /
    • 2021
  • In this study, predictive equations of the normalized shear modulus and the damping ratio curves for loose medium sands reinforced by vinyl strip-cement are proposed. Based on the results of a series of resonant-column tests (Yu, et al., 2018) conducted under the confining stresses of 15, 30, 60 kPa on sand specimens prepared with 40% relative density and reinforced by various contents of vinyl strip (0.0, 0.1, 0.3, 0.4%) and cement (0, 1, 2%), the equations estimating the normalized shear modulus and the damping ratio are proposed as functions of reinforcing conditions and confining stresses. The comparison between predicted and measured values of shear modulus and damping ratio shows a good agreement and the reliability of proposed predictive equations are validated by high R2-value greater than 0.9. Therefore, it is expected that the time and the cost required for constructing the normalized shear modulus and the damping ratio curves will be much reduced by using proposed equations in this study since those can easily be estimated without conducting resonant-column test.

Dynamic Shear Properties of Nak-Dong River Sand Determined by Resonant Column/Torsional Shear Test (공진주/비듦전단시험을 이용한 낙동강모래의 동적전단변형특성)

  • Kim, Jin-Man;Park, Yo-Hwan;Lim, Suck-Dong
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.11
    • /
    • pp.5-15
    • /
    • 2009
  • Dynamic shear properties of Nak-Dong river sand were investigated to build a soil property database for Nak-Dong delta region. Samples were taken from the estuary and the midstream of the river. Laboratory specimens were prepared by air pluviation method, and were tested by using RC/TS apparatus at various confining stresses, relative densities and numbers of cycles. Shear modulus reduction and damping curves were developed using Ramberg-Osgood and Modified Hyperbolic Models. The developed curves, compared to those reported by other investigators, show only a slight difference. The outcome of this RC/TS experiments can be very important resources when accessing the dynamic response of sandy soils in Nak-Dong delta region in the future.

Dynamic Properties of Korean Subgrade Soils Using Resonant Column Test (공진주 시험기를 이용한 국내 노상토의 동적 물성치)

  • Kim, Dong-Su;Jeong, Chung-Gi;Hong, Seong-Yeong
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.85-96
    • /
    • 1994
  • Resonant column test huts been widely used as a primary laboratory testing technique in investigating dynamic soil properties expressed in therms of shear and Young's moduli and material damping. In thin Paper, dynamic Properties of typical Korean subgrade boils are investigated at shearing strains between 10-4% and 10-1% using Stokoe-type resonant column teat. The elastic threshold strains(yte) above which shear modulus and damping ratio are affected by strain amplitude, are defined at strain amplitude of about 10-3%. Below yte", small-strain shear modulus (Gmn) increases with confining pressure (Qc) as proportional to (Qe)0.61, and small-strain damping ratio(Dmin) ranges between 1% and 5.7%. Above yte, normalized shear modulus reduction curve(G/Gma. versus log strain) can be quite well expressed with Ramberg Osgood stress -strain equation and match well the curve suggested for sand by Seed and Idriss.riss.

  • PDF

Evaluation of Modulus of Soils Using Various Laboratory Tests (다양한 실내시험을 이용한 지반의 탄성계수 평가)

  • 권기철;김동수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.345-352
    • /
    • 2000
  • It is very important to evaluate the reliable nonlinear modulus characteristics of soils not only in the analysis of geotechnical structures under working stress conditions but also for the soil dynamic problems. For the evaluation of modulus characteristics of soils, various tests have been mostly employed in laboratory. However, different testing techniques are likely to have different ranges of reliable strain measurements, different applied stress level, and different loading frequencies, and the modulus of soils can be affected by these variables. For reliable evaluation, therefore, those effects on the modulus need to be considered, and measured values should be effectively adjusted to actual conditions where the soil is working. In this paper, to evaluate the modulus characteristics of soils, laboratory testing such as free-free resonant column (FF-RC), resonant column (RC), torsional shear (TS), static TX, and cyclic M/sub R/ tests were performed. The effects of strain amplitude, loading frequency, loading cycles, confining pressure, density, and water content on modulus were investigated. It is shown that the FF-RC test, which is simple and inexpensive testing technique, can provide a reliable estimation of small strain Young's modulus (E/sub max/), and the modulus evaluated by various laboratory tests are comparable to each other fairly well when the effects of these factors are properly taken into account.

  • PDF

Seismic Response Evaluation of Waste Landfills (쓰레기 매립지반의 지진거동 평가)

  • 김기태;이지호;장연수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.767-772
    • /
    • 2002
  • Free-field ground motion during earthquake is significantly affected by the local site conditions and it is essential in the seismic design to perform the accurate site-specific ground response analysis. In this paper, one-dimensional seismic characteristics of waste landfill are studied based on the vertical propagation of horizontal shear waves through the column of soil/waste. Seismic response analysis is peformed for short-period, long-period and artificial earthquake ground motions using a computer program for seismic response analysis of horizontally layered soil deposits. The computed peak ground accelerations are compared with the values calculated according to Korean seismic design guidelines. The analysis result shows that the long-period earthquake causes the largest peak ground acceleration while the artificial earthquake results in the smallest one.

  • PDF