• Title/Summary/Keyword: shear lift force

Search Result 20, Processing Time 0.029 seconds

Behavior of a Heavy Particle in the Shear Flow Near a Flat Wall (벽 근처 전단 유동 내의 입자의 운동)

  • Jeong Jae-Dal;Cho Seong-Gee;Lee Chang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.806-817
    • /
    • 2006
  • The motion of a small rigid particle in the shear flow near a stationary flat wall is investigated in the context of Stokes flow. The lift force proposed by Saffman and later modified by Mclaughlin and Mei is considered in the prediction of the particle motion far away from the wall. Later, the expression of the lift force is modified to take into account the effect of wall. In the analysis, gravity, lift and drag acting on a small rigid particle near the wall are taken into account. Both analytical and numerical results for the terminal velocities, distances from the wall and trajectories of the particle are presented. In addition, we extended the present analysis to turbulent near-wall flow in the vicinity of the wall.

Migration of a heavy particle in uniform shear flow (전단유동에서 입자의 운동)

  • Cho, Seong-Gee;Lee, Chang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1903-1908
    • /
    • 2003
  • The motion of a small, heavy rigid particle in the shear flow on a stationary wall is investigated in the context of Stokes flow. The lift force proposed by Saffman(1965) and later modified by Mclaughlin(1991) and Mei(1992) is considered in the prediction of the particle motion far away from the wall. Later, the expression of the lift force is modified to take into account the effect of wall(Cherukat and Mclaughlin, 1994). In the analysis the gravity and buoyancy effect are also taken into account. An analytical and numerical results for the terminal velocities and trajectories of the particle after the enough lapse of time are presented.

  • PDF

Characteristics of fluctuating lift forces of a circular cylinder during generation of vortex excitation

  • Kim, Sangil;Sakamoto, Hiroshi
    • Wind and Structures
    • /
    • v.9 no.2
    • /
    • pp.109-124
    • /
    • 2006
  • This paper describes the characteristics of the fluctuating lift forces when a circular cylinder vibrates in the cross-flow direction. The response characteristics on elastically supported the circular cylinder was first examined by a free-vibration test. Next, flow-induced vibrations obtained by the free-vibration test were reproduced by a forced-vibration test, and then the characteristics of the fluctuating lift forces, the work done by the fluctuating lift, the behavior of the rolling-up of the separated shear layers were investigated on the basis of the visualized flow patterns. The main findings were that (i) the fluctuating lift forces become considerably large than those of a stationary circular cylinder, (ii) negative pressure generates on the surface of the circular cylinder when the rolling-up of separated shear layer begins, (iii) the phase between the fluctuating lift force and the cylinder displacement changes abruptly as the reduced velocity $U_r$ increases, and (iv) whether the generating cross-flow vibration becomes divergent or convergent can be described based on the work done by the fluctuating lift force. Furthermore, it was found that the generation of cross-flow vibration can be perfectly suppressed when the small tripping rods are installed on the surface of the circular cylinder.

Numerical studies on non-shear and shear flows past a 5:1 rectangular cylinder

  • Zhou, Qiang;Cao, Shuyang;Zhou, Zhiyong
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.379-397
    • /
    • 2013
  • Large Eddy Simulations (LES) were carried out to investigate the aerodynamic characteristics of a rectangular cylinder with side ratio B/D=5 at Reynolds number Re=22,000 (based on cylinder thickness). Particular attention was devoted to the effects of velocity shear in the oncoming flow. Time-averaged and unsteady flow patterns around the cylinder were studied to enhance understanding of the effects of velocity shear. The simulation results showed that the Strouhal number has no significant variation with oncoming velocity shear, while the peak fluctuation frequency of the drag coefficient becomes identical to that of the lift coefficient with increase in velocity shear. The intermittently-reattached flow that features the aerodynamics of the 5:1 rectangular cylinder in non-shear flow becomes more stably reattached on the high-velocity side, and more stably separated on the low-velocity side. Both the mean and fluctuating drag coefficients increase slightly with increase in velocity shear. The mean and fluctuating lift and moment coefficients increase almost linearly with velocity shear. Lift force acts from the high-velocity side to the low-velocity side, which is similar to that of a circular cylinder but opposite to that of a square cylinder under the same oncoming shear flow.

Numerical studies of the suppression of vortex-induced vibrations of twin box girders by central grids

  • Li, Zhiguo;Zhou, Qiang;Liao, Haili;Ma, Cunming
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.305-315
    • /
    • 2018
  • A numerical study based on a delayed detached eddy simulation (DDES) is conducted to investigate the aerodynamic mechanism behind the suppression of vortex-induced vibrations (VIVs) of twin box girders by central grids, which have an inhibition effect on VIVs, as evidenced by the results of section model wind tunnel tests. The mean aerodynamic force coefficients with different attack angles are compared with experimental results to validate the numerical method. Next, the flow structures around the deck and the aerodynamic forces on the deck are analyzed to enhance the understanding of the occurrence of VIVs and the suppression of VIVs by the application of central grids. The results show that shear layers are separated from the upper railings and lower overhaul track of the upstream girder and induce large-scale vortices in the gap that cause periodical lift forces of large amplitude acting on the downstream girder, resulting in VIVs of the bridge deck. However, the VIVs are apparently suppressed by the central grids because the vortices in the central gap are reduced into smaller vortices and become weaker, causing slightly fluctuating lift forces on the deck. In addition, the mean lift force on the deck is mainly caused by the upstream girder, whereas the fluctuating lift force is mainly caused by the downstream girder.

Fluid Force Reduction Characteristics of a Square Prism Having Fences on the Corner (모서리에 펜스를 가진 정방형주의 유체력저감 특성)

  • Ro, Ki-Deok;Kim, Kwang-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.389-395
    • /
    • 2006
  • The fluid force reduction of a square prism having fences on the corner was studied by the measuring the drag and lift acting on the prism and by the visualization experiment of the flow around the prism. The height of the fence was 10% of the square width and the range of Reynolds number considered was from $Re=0.9{\times}104$ to $Re=2.1{\times}104$. The drag of the prism was reduced about 6.8% and the amplitude of the lift was reduced by attaching two normal fences on the rear corners of the prism. In this case, the separated flow at the front corners was reattached on the upper and lower sides of the prism and the vortex streets at the wake region were appeared more slowly than that of the prototype prism.

Simulation of turbulent flow of turbine passage with uniform rotating velocity of guide vane

  • Wang, Wen-Quan;Yan, Yan
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.421-440
    • /
    • 2018
  • In this study, a computational method for wall shear stress combined with an implicit direct-forcing immersed boundary method is presented. Near the immersed boundaries, the sub-grid stress is determined by a wall model in which the wall shear stress is directly calculated from the Lagrangian force on the immersed boundary. A coupling mathematical model of the transition process for a model Francis turbine comprising turbulent flow and rotating rigid guide vanes is established. The spatiotemporal distributions of pressure, velocity, vorticity and turbulent quantity are gained with the transient process; the drag and lift coefficients as well as other forces (moments) are also obtained as functions of the attack angle. At the same time, analysis is conducted of the characteristics of pressure pulsation, velocity stripes and vortex structure at some key parts of flowing passage. The coupling relations among the turbulent flow, the dynamical force (moment) response of blade and the rotating of guide vane are also obtained.

Quality Evaluation of Resistance Spot Welding using Acoustic Emission (음향방출을 이용한 저항 점용접의 용접 품질평가)

  • Jo Dae-Hee;Rhee Zhang-Kyu;Park Sung-Oan;Cho Jin-Ho;Kim Bong-Gag;Woo Chang-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.98-104
    • /
    • 2006
  • In this paper, for the purpose of investigation the acoustic emission(AE) behaviors during resistance spot welding process and tension test of spec steels. As the results present the resistance spot welding method that can get suitable welding qualities or structural integrity estimating method. The resistance spot welding process consists of several stages: set-down of the electrodes; squeeze; current flow; forging; hold time; and lift-off. Various types of AE signals are produced during each of these stages. For tensile-shear test and cross tensile test in resistance spot welded specimens, fracture pa 야 ems are produced: tear fracture; shear fracture; and plug fracture. Tensile-shear specimens strength appeared higher than cross tensile specimens one. In case of tensile-shear specimen happened tear fracture that crack happens in most lower plate. Also, in case of cross tensile specimens, upper plate and lower plate are detached perfect fracture was exposed increases a little as acting force is lower than ordinary welding condition. Therefore, the structure which is combined by resistance spot welding confirmed that welding design must attain so that shear stress may can interact mainly.

Numerical Simulation of Flow around Variable Pitch Helically Elliptic Twisted Cylinder based on the Biomimetic Flow Control (생체모방 유동제어 기반 가변 피치 나선형 실린더 주위 유동 해석)

  • Moon, Jahoon;Yoon, Hyun Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.96-103
    • /
    • 2020
  • The new geometric disturbance is proposed to control the flow around the bluff body. The new geometry is characterized by the variable pitch which is applied on the Helically Elliptic Twisted (HET) cylinder. The performance of the HTE geometry as a biomimetic passive flow control was confirmed by Jung and Yoon (2014). The Large Eddy Simulation (LES) is used for the evaluation of the flow control performance of the Variable Pitch HTE (VPHTE) cylinder at Reynolds number (Re) of 3000 corresponding to the subcritical regime. The circular and HTE cylinders are also considered to compare the performance of the VPHTE cylinder at the same Re. The VPHTE cylinder gives the smallest values of the force coefficients than the circular and HTE cylinders. The drag and lift coefficients of the VPHTE cylinder are about 15.2% and 94.0% lower than those of the circular cylinder, respectively. Especially, the VPHTE cylinder achieves about 2.3% and 30.0% reduction of the drag coefficient and the root mean square of the lift coefficient than the HTE cylinder, respectively. Furthermore, The VPHTE cylinder forms more elongated and stabilized separated shear layer than the circular cylinder, which supports the reduction of the force coefficients.