• Title/Summary/Keyword: shear interaction

Search Result 707, Processing Time 0.028 seconds

Effect of Intake Vortex Occurrence on the Performance of an Axial Hydraulic Turbine in Sihwa-Lake Tidal Power Plant, Korea

  • Kim, Jin-Hyuk;Heo, Man-Woong;Cha, Kyung-Hun;Kim, Kwang-Yong;Tac, Se-Wyan;Cho, Yong;Hwang, Jae-Chun;Collins, Maria
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.4
    • /
    • pp.174-179
    • /
    • 2012
  • A numerical study to investigate the effect of intake vortex occurrence on the performance of an axial hydraulic turbine for generating tidal power energy in Sihwa-lake tidal power plant, Korea, is performed. Numerical analysis of the flow through an sxial hydraulic turbine is carried out by solving three-dimensional Reynolds-averaged Navier-Stokes dquations with the shear stress transport turbulence model. In the real turbine operation, the vortex flows are occurred in both the side corners around the intake of an axial hydraulic turbine due to the interaction between the inflow angle of water and intake structure. To analyze these vortex phenomena and to evaluate their impacts on the turbine performance, the internal flow fields of the axial hydraulic turbines with the different inflow angles are compared with their performances. As the results of numerical analysis, the vortex flows do not directly affect the turbine performance.

A meshfree adaptive procedure for shells in the sheet metal forming applications

  • Guo, Yong;Wu, C.T.;Park, C.K.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.137-156
    • /
    • 2013
  • In this paper, a meshfree shell adaptive procedure is developed for the applications in the sheet metal forming simulation. The meshfree shell formulation is based on the first-order shear deformable shell theory and utilizes the degenerated continuum and updated Lagrangian approach for the nonlinear analysis. For the sheet metal forming simulation, an h-type adaptivity based on the meshfree background cells is considered and a geometric error indicator is adopted. The enriched nodes in adaptivity are added to the centroids of the adaptive cells and their shape functions are computed using a first-order generalized meshfree (GMF) convex approximation. The GMF convex approximation provides a smooth and non-negative shape function that vanishes at the boundary, thus the enriched nodes have no influence outside the adapted cells and only the shape functions within the adaptive cells need to be re-computed. Based on this concept, a multi-level refinement procedure is developed which does not require the constraint equations to enforce the compatibility. With this approach the adaptive solution maintains the order of meshfree approximation with least computational cost. Two numerical examples are presented to demonstrate the performance of the proposed method in the adaptive shell analysis.

Numerical simulation of external pre-stressed steel-concrete composite beams

  • Moscoso, Alvaro M.;Tamayo, Jorge L.P.;Morsch, Inacio B.
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.191-201
    • /
    • 2017
  • External pre-stressing is often used in strengthening or retrofitting of steel-concrete composite beams. In this way, a proper numerical model should be able to trace the completely nonlinear response of these structures at service and ultimate loads. A three dimensional finite element model based on shell elements for representing the concrete slab and the steel beam are used in this work. Partial interaction at the slab-beam interface can be taken into account by using special beam-column elements as shear connectors. External pre-stressed tendons are modeled by using one-dimensional catenary elements. Contact elements are included in the analysis to represent the slipping at the tendon-deviator locations. Validation of the numerical model is established by simulating seven pre-stressed steel-concrete composite beams with experimental results. The model predictions agree well with the experimental results in terms of collapse loads, path failures and cracking lengths at negative moment regions due to service loads. Finally, the accuracy of some simplified formulas found in the specialized literature to predict cracking lengths at interior supports at service loading and for the evaluation of ultimate bending moments is also examined in this work.

Self-Healing Asphalt Prepared by using Ionic Epoxy Resin

  • Lee, Young-Jik;Seo, Jun-Young;Kim, Seo-Yeon;Lee, Seung-Hyun;Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.50 no.3
    • /
    • pp.167-174
    • /
    • 2015
  • Anionic epoxy compound was synthesized and added to asphalt aiming to prepare self-healing asphalt. Epoxy-modified asphalt showed excellent modification effect and healing effect as well. The results revealed that with 5% addition of polymer the tensile strength, impact strength and complex shear modulus of the polymer-modified asphalt increased by 65%. 64% and 35%, respectively. It seems that high interaction occurs between polymer and asphalt matrix. Self-healing efficiency of the polymer-modified asphalt based on tensile strength showed 100%, comparing to 79% of straight asphalt. In impact experiment the polymer-modified asphalt showed 99% of healing efficiency, comparing to 77% of straight asphalt. In rheological experiment the polymer-modified asphalt showed 103% of healing efficiency, comparing to 72% of straight asphalt. It appears that the ionic bonding existing in epoxy polymers contributed to high values of self-healing efficiency. The polymer which has high intermolecular force fills the crack of the asphalt, pulling the opponent side each other, and so the original properties were restored.

Behavior of strengthened reinforced concrete coupling beams by bolted steel plates, Part 2: Evaluation of theoretical strength

  • Zhu, Y.;Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.5
    • /
    • pp.563-580
    • /
    • 2010
  • Composite beams using bolts to attach steel plates to the side faces of existing reinforced concrete (RC) coupling beams can enhance both their strength and deformability. The behavior of those composite beams differs substantially from the behavior of typical composite beams made up of steel beams and concrete slabs. The former are subjected to longitudinal, vertical and rotational slips, while the latter only involve longitudinal slip. In this study, a mixed analysis method was adopted to develop the fundamental equations for accurate prediction of the load-carrying capacity of steel plate strengthened RC coupling beams. Then, a rigid plastic analysis technique was used to cope with the full composite effect of the bolt group connections. Two theoretical models for the determination of the strength of medium-length plate strengthened coupling beams based on mixed analysis and rigid plastic methods are presented. The strength of the strengthened coupling beams is derived. The vertical and longitudinal slips of the steel plates and the shear strength of the anchor-bolt connection group is considered. The theoretical models are validated by the available experimental results presented in a companion paper. The strength of the specimens predicted from the mixed analysis model is found to be in good agreement with that from the experimental results.

Development of the intermittency turbulence model for a plane jet flow (자유 평면 제트유동 해석을 위한 간혈도 난류모델의 개발)

  • 조지룡;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.528-536
    • /
    • 1987
  • In a turbulent free shear flow, the large scale motion is characterized by the intermittent flow which arises from the interaction between the turbulent fluid and the irrotational fluid of the environment through the mean velocity gradient. This large scale motion causes a bulk convection whose effect is similar to the spatial diffusion process. In this paper, the total diffusion process is proposed to be approximated by weighted sum of the bulk convection due to the large scale motion and the usual gradient diffusion due to small scale motion. The diffusion term in conventional .kappa.-.epsilon. model requires on more equation of the intermittency transport equation. A production term of this equation means mass entrainment from the irrotational fluid to the turbulent one. In order to test the validity of the proposed model, a plane jet is predicted by this method. Numerical results of this model is found to yield better agreement with experiment than the standard .kappa.-.epsilon. model and Byggstoyl & Kollmann's model(1986). Present hybrid diffusion model requires further tests for the check of universality of model and for the model constant fix.

Coupling of nonlinear models for steel-concrete interaction in structural RC joints

  • Dominguez, Norberto;Perez-Mota, Jesus
    • Coupled systems mechanics
    • /
    • v.3 no.2
    • /
    • pp.195-211
    • /
    • 2014
  • When strong seismic forces act on reinforced concrete structures, their beam-column connections are very susceptible to damage during the earthquake event. The aim of this numerical work is to evaluate the influence of the internal steel reinforcement array on the nonlinear response of a RC beam-column connection when it is subjected to strong cyclic loading -as a seismic load. For this, two specimens (extracted from an experimental test of 12 RC beam-column connections reported in literature) were modeled in the Finite Element code FEAP considering different stirrup's arrays. In order to evaluate the nonlinear response of the RC beam-column connection, the 2D model takes into account the nonlinear thermodynamic behavior of each component: for concrete, a damage model is used; for steel reinforcement, it is adopted a classical plasticity model; in the case of the steel-concrete bonding, this one is considered perfect without degradation. At the end, we show a comparison between the experimental test's responses and the numerical results, which includes the distribution of shear stresses and damage inside the concrete core of the beam-column connection; in the other hand, the effects on the connection of a low and high state of confinement are analyzed for all cases.

A Study on Interaction of Estuarial Water and Sediment Transport (하구수와 표사의 상호작용에 관한 연구)

  • Lee, H.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.451-461
    • /
    • 2000
  • The design and maintenance of navigation channel and water facilities of an harbor which is located at the mouth of river or at the estuary area are difficult due to the complexity of estuarial water and sediment circulation. Effects of deepening navigable waterways, of changing coastline configurations, or of discharging dredged material to the open sea are necessary to be investigated and predicted in terms of water quality and possible physical changes to the coastal environment. A borad analysis of the transport mechanism in the estuary area was made in terms of sediment property, falling velocity, concentration and flow characteristics. In order to simulate the transport processes, a two-dimensional finite element model is developed, which includes erosion, transport and deposition mechanism of suspended sediments. Galerkin’s weighted residual method is used to solve the transient convection-diffusion equation. The fluid domain is subdivided into a series of triangular elements in which a quadratic approximation is made for suspended sediment concentration. Model could deal with a continuous aggregation by stipulating the settling velocity of the flocs in each element. The model provides suspended sediment concentration, bed shear stress, erosion versus deposition rate and bed profile at the given time step.

  • PDF

Control of Sound Pressure Inside a Flow Excited Resonator (유동가진 공명기 내부의 음압 제어)

  • Hwang, Cheol-Ho;Park, Jong-Beom
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.196-199
    • /
    • 2005
  • Flow traveling over a cavity opening forms a vortex due to unstable shear layer and induces an aerodynamic pressure excitation from the diffusion of the vortex convecting out of the trailing edge of the opening. The interaction between the excitation force and the cavity response sustains resonance in the resonator(cavity) and locked-in vortex shedding at the leading edge of the opening. The aerodynamic excitation force can be described from the diffusion of the vortex over the trailing edge and the level of its diffusivity is related to the strength of vorticity seeded at the loading edge. In this study, the control scheme of the internal pressure oscillation was proposed from regulating the vorticity at the leading edge by use of an oscillating spoiler. It was found that the relative motion between the spoiler and the air mass at the cavity opening influenced vorticity strength and the control was achieved by direct feedback of the cavity pressure fluctuation to the actuator.

  • PDF

A review of experimental and numerical investigations about crack propagation

  • Sarfarazi, Vahab;Haeri, Hadi
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.235-266
    • /
    • 2016
  • A rock mass containing non-persistent joints can only fail if the joints propagate and coalesce through an intact rock bridge. Shear strength of rock mass containing non-persistent joints is highly affected by the both, mechanical behavior and geometrical configuration of non-persistent joints located in a rock mass. Existence of rock joints and rock bridges are the most important factors complicating mechanical responses of a rock mass to stress loading. The joint-bridge interaction and bridge failure dominates mechanical behavior of jointed rock masses and the stability of rock excavations. The purpose of this review paper is to present techniques, progresses and the likely future development directions in experimental and numerical modelling of a non-persistent joint failure behaviour. Such investigation is essential to study the fundamental failures occurring in a rock bridge, for assessing anticipated and actual performances of the structures built on or in rock masses. This paper is divided into two sections. In the first part, experimental investigations have been represented followed by a summarized numerical modelling. Experimental results showed failure mechanism of a rock bridge under different loading conditions. Also effects of the number of non-persistent joints, angle between joint and a rock bridge, lengths of the rock bridge and the joint were investigated on the rock bridge failure behaviour. Numerical simulation results are used to validate experimental outputs.