• Title/Summary/Keyword: shear induced structure

Search Result 139, Processing Time 0.024 seconds

Shear-induced microstructure and rheology of cetylpyridinium chloride/sodium salicylate micellar solutions

  • Park, Dae-Geun;Kim, Won-Jong;Yang, Seung-Man
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.3_4
    • /
    • pp.143-149
    • /
    • 2000
  • In this article, we considered shear-induced microstructure and rheological behavior of micellar solutions of cationic surfactant, cetylpyridinium chloride (CPC) in the presence of a structure-forming additive, sodium salicylate (NaSal). Shear viscosity, shear moduli and flow birefringence were measured as functions of the surfactant and additive concentrations. In the presence of NaSal, the micellar solution exhibited the non-linear rheological behavior due to the formation of supramolecular structures when the molar ratio of NaSal to CPC exceeded a certain threshold value. Flow birefringence probed the change in micelle alignment under shear flow. At low shear rates, the flow birefringence increased as the shear rate increased. On the other hand, fluctuation of flow birefringence appeared from the shear rate near the onset of shear thickening, which was caused by shear-induced coagulation or aggregation. These results were confirmed by the SEM images of in situ gelified micelle structure through sol-gel route.

  • PDF

Rheological behavior and wall slip of dilute and semidilute CPyCl/NaSal surfactant solutions

  • Kibum Sung;Han, Min-Soo;Kim, Chongyoup
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.3
    • /
    • pp.151-156
    • /
    • 2003
  • In this research, experimental studies were performed to examine the rheological behavior of equimolar solutions of cetylpyridinium chloride (CPyCl) and sodium salicylate (NaSal) solutions with concentration. The surfactant solutions were prepared by dissolving 2 mM/2 mM - 80 mM/80 mM of surfactant/counterion in double-distilled water. It has been observed that the zero shear viscosity shows abrupt changes at two critical values of C^*$ and C^{**}$. These changes are caused by the switching of relaxation mechanism with concentration of CPyCl/NaSal solutions at those concentrations. The wall slip velocities of dilute and semidilute CPyCl/NaSal solutions show a dramatic increase with shear rate where the shear viscosity exhibits shear thickening behavior for dilute solutions and shear thinning behavior for semi-dilute solutions, respectively. Considering that the dramatic increase in wall slip velocity should be related to the formation of shear-induced structure (SIS) in the surfactant solution, the shear thickening behavior of semi-dilute solutions is caused by elastic instability unlike the case of dilute solutions.

Shear-induced structure and dynamics of hydrophobically modified hydroxy ethyl cellulose (hmHEC) in the presence of SDS

  • Tirtaatmadija, Viyada;Cooper-white, Justin J.;Gason, Samuel J.
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.4
    • /
    • pp.189-201
    • /
    • 2002
  • The interaction between hydrophobically modified hydroxyethyl cellulose (hmHEC), containing approximately 1 wt% side-alkyl chains of $C_{16}$, and an anionic sodium dodecyl sulphate (SDS) surfactant was investigated. For a semi-dilute solution of 0.5 wt% hmHEC, the previously observed behaviour of a maximum in solution viscosity at intermediate SDS concentrations, followed by a drop at higher SDS concentrations, until above the cmc of surfactant when the solution resembles that of the unsubstituted polymer, was confirmed. Additionally, a two-phase region containing a hydrogel phase and a water-like supernatant was found at low SDS concentrations up to 0.2 wt%, a concentration which is akin to the critical association concentration, cac, of SDS in the presence of hmHEC. Above this concentration, SDS molecules bind strongly to form mixed micellar aggregates with the polymer alkyl side-chains, thus strengthening the network junctions, resulting in the observed increase in viscosity and elastic modulus of the solution. The shear behaviour of this polymer-surfactant complex during steady and step stress experiments was examined In great detail. Between SDS concentrations of 0.2 and 0.25 wt%, the shear viscosity of the hmHEC-polymer complex network undergoes shear-induced thickening, followed by a two-stage shear-induced fracture or break-up of the network. The thickening is thought to be due to structural rearrangement, causing the network of flexible polymers to expand, enabling some polymer hydrophobic groups to be converted from intra- to inter-chain associations. At higher applied stress, a partial local break-up of the network occurs, while at even higher stress, above the critical or network yield stress, a complete fracture of the network into small microgel-like units, Is believed to occur. This second network rupture is progressive with time of shear and no steady state in viscosity was observed even after 300 s. The structure which was reformed after the cessation of shear is found to be significantly different from the original state.

Vortex-induced vibration characteristics of multi-mode and spanwise waveform about flexible pipe subject to shear flow

  • Bao, Jian;Chen, Zheng-Shou
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.163-177
    • /
    • 2021
  • Numerical simulations of the Vortex-Induced Vibration (VIV) about a large-scale flexible pipe subject to shear flow were carried out in this paper. Efficiency verification was performed firstly, validating that the proposed fluid-structure interaction solution strategy is competent in predicting the VIV response. Then, the VIV characteristics related to multi-mode and spanwise hybrid waveform about the flexible pipe attributed to shear flow were investigated. When inflow velocity rises, higher vibration modes are apt to be excited, and the spanwise waveform easily convertes from a standing-wave-dominated status to a hybrid standing-traveling wave status. The multi-mode or even multiple-dominant-mode is prone to occur, that is, the dominant mode is often followed by several apparent subordinate modes with considerable vibration energy. Hence, the shedding frequencies no longer obey Strouhal law, and vibration trajectories become intricate. According to the motion analysis concerning the coupled cross-flow and in-line vibrations, as well as the corresponding wake patterns, a tight coupling interaction exists between the structural deformation and the wake flow behind the flexible pipe. In addition, the evolution of the vortex tube along the pipe span and a strong 3D effect are observed due to the slenderness of the flexible pipe and the variability of the vortex shedding attributed to the shear flow.

Thermally induced mechanical analysis of temperature-dependent FG-CNTRC conical shells

  • Torabi, Jalal;Ansari, Reza
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.313-323
    • /
    • 2018
  • A numerical study is performed to investigate the impacts of thermal loading on the vibration and buckling of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) conical shells. Thermo-mechanical properties of constituents are considered to be temperature-dependent. Considering the shear deformation theory, the energy functional is derived, and applying the variational differential quadrature (VDQ) method, the mass and stiffness matrices are obtained. The shear correction factors are accurately calculated by matching the shear strain energy obtained from an exact three-dimensional distribution of the transverse shear stresses and shear strain energy related to the first-order shear deformation theory. Numerical results reveal that considering temperature-dependent material properties plays an important role in predicting the thermally induced vibration of FG-CNTRC conical shells, and neglecting this effect leads to considerable overestimation of the stiffness of the structure.

Vibration Control of Shear Wall-Frame System using Energy Dissipation Devices (에너지 소산형 감쇠기를 이용한 철근콘크리트 전단벽-골조 시스템의 진동제어)

  • Park, Ji-Hun;Kim, Gil-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.578-581
    • /
    • 2007
  • In this study, the seismic control performance of energy dissipation devices installed in a shear all-frame structure is investigated through nonlinear time history analysis of a 12-story building. Inelastic shear walls are modeled using the multiple vertical line element model (MVLEM) and inelastic columns and girders were modeled using fiber beam elements. For a seismic load increased by 38% compared to the design load, the seismic control performance was analyzed based on the results of a nonlinear time history analysis in terms of the inter-story drift, the story shear and the flexural strain. Friction type dampers was found to performs best if they are installed in the form of a brace adjacent to the shear wall with the friction force of 15 % of the maximum story shear force induced in the original building structure without dampers.

  • PDF

Cross flow response of a cylindrical structure under local shear flow

  • Kim, Yoo-Chul;Rheem, Chang-Kyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.101-107
    • /
    • 2009
  • The VIV (Vortex-Induced Vibration) analysis of a flexible cylindrical structure under locally strong shear flow is presented. The model is made of Teflon and has 9.5m length, 0.0127m diameter, and 0.001m wall thickness. 11 2-dimensional accelerometers are installed along the model. The experiment has been conducted at the ocean engineering basin in the University of Tokyo in which uniform current can be generated. The model is installed at about 30 degree of slope and submerged by almost overall length. Local shear flow is made by superposing uniform current and accelerated flow generated by an impeller. The results of frequency and modal analysis are presented.

Nonequilibrium Molecular Dynamics Simulation Study on the Shear-Induced Orientational Change of Rodlike Molecules

  • Lee, Chang Jun;Sim, Hun Gu;Kim, Un Cheon;Lee, Song Hui;Park, Hyeong Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.434-440
    • /
    • 2000
  • We present the results of computer simulation for the steady shear flows of rodlike molecules using nonequi-librium molecular dynamics simulation (NEMD) method. The model particle is a rigid rod composed of lin-early connected 6-sites and the Lennard-Jones 12-6 potential governs interactions between sites in different molecules. The system of rodlike molecules exhibits the change of orientational structure, that is, isotropic-nematic transition at high shear rates. We elucidate the nature of the ordered system developed from an isotro-pic phase by steady shear through an analysis of various quantities: orientational order parameters, orientational pair correlation functions, orientational distribution function, and snapshots of configurations. The effects of temperature and density on the shear rate dependence of orientational structure are described.

Seismic assessment of slender high rise buildings with different shear walls configurations

  • Farghaly, Ahmed Abdelraheem
    • Advances in Computational Design
    • /
    • v.1 no.3
    • /
    • pp.221-234
    • /
    • 2016
  • The present study dictates the behavior of shear wall under a seismic event in slender high rise buildings, and studies the effect of height, location and distribution of shear wall in slender high rise building with and without boundary elements induced by the effect of an earthquake. Shear walls are located at the sides of the building, to counter the earthquake forces. This study is carried out in a 12 storeys building using SAP2000 software. The obtained results disclose that the behavior of the structure is definitely affected by the height and location of shear walls in slender high rise building. The stresses are concentrated at the limit between the shear wall region and the upper non shear wall especially for shear walls without columns. Displacements are doubled between the shear wall region and the upper non shear wall especially for shear walls without columns.

The Variation Rate of Shear Modulus for Anisotropic Magneto-rheological Elastomer due to Volume Fraction of CIP (CIP 부피비에 따른 이방성 MRE의 전단계수 변화율)

  • Jeong, Un-Chang;Yoon, Ji-Hyun;Yang, In-Hyung;Lee, You-Yub;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1132-1137
    • /
    • 2011
  • MRE(magneto-rheological elastomers) is a material which shows reversible and various modulus in magnetic field. Comparing to conventional rubber vibration isolator, MREs are able to absorb vibration of broader frequency range. These characteristic phenomena result from the orientation of magnetic particles named carbonyl iron powder(CIP) in rubber matrix. In this paper, simulation on variation rate of shear modulus for anisotropic MRE due to volume fraction of CIP and an effective permeability model was applied to predict the field-induced shear modulus of MREs. Also, the variation rate of shear modulus for anisotropic MRE was derived using magneto-mechanical theory. Based on Maxwell-Garnett mixing rule, the increment of shear modulus was calculated to evaluate the shear modulus of MREs with column structure of CIP due to induced current. The simulation results on variation rate of shear modulus can be applied to the variable mechanical system of MRE such as tunable vibration absorber, stiffness variable bush and mount.