Rheological behavior and wall slip of dilute and semidilute CPyCl/NaSal surfactant solutions

  • Kibum Sung (Department of Chemical and Biological Engineering and Applied Rheology Center Korea University) ;
  • Han, Min-Soo (Department of Chemical and Biological Engineering and Applied Rheology Center Korea University) ;
  • Kim, Chongyoup (Department of Chemical and Biological Engineering and Applied Rheology Center Korea University)
  • Published : 2003.09.01

Abstract

In this research, experimental studies were performed to examine the rheological behavior of equimolar solutions of cetylpyridinium chloride (CPyCl) and sodium salicylate (NaSal) solutions with concentration. The surfactant solutions were prepared by dissolving 2 mM/2 mM - 80 mM/80 mM of surfactant/counterion in double-distilled water. It has been observed that the zero shear viscosity shows abrupt changes at two critical values of C^*$ and C^{**}$. These changes are caused by the switching of relaxation mechanism with concentration of CPyCl/NaSal solutions at those concentrations. The wall slip velocities of dilute and semidilute CPyCl/NaSal solutions show a dramatic increase with shear rate where the shear viscosity exhibits shear thickening behavior for dilute solutions and shear thinning behavior for semi-dilute solutions, respectively. Considering that the dramatic increase in wall slip velocity should be related to the formation of shear-induced structure (SIS) in the surfactant solution, the shear thickening behavior of semi-dilute solutions is caused by elastic instability unlike the case of dilute solutions.

Keywords

References

  1. Phys. Rev. Lett. v.79 Observation of bulk phase separation and coexistence in a sheared micellar solution Boltenhagen,P.;Y.Hu;E.F.Matthys;D.J.Pine https://doi.org/10.1103/PhysRevLett.79.2359
  2. ACS Symposium Series v.578 Theoretical modeling of viscoelastic phases Cstes,M.E.;Herb,C.A.(ed.);R.K.Prudhomme(ed.) https://doi.org/10.1021/bk-1994-0578.ch002
  3. J. Phys. v.2 Statics and dynamics of worm-like surfactant micelles Cates,M.E.;S.J.Candau
  4. Macromolecules v.20 Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions Cates,M.E. https://doi.org/10.1021/ma00175a038
  5. ACS Symposium Series v.578 Viscoelastic surfactant solutions Hoffmann,H.;Herb,C.A(ed.);R.K.Prudhomme(ed.) https://doi.org/10.1021/bk-1994-0578.ch001
  6. J. Rheol. v.46 Measurement of wallslip-layer rheology in shear-thickening wormy micelle solutions Hu,H.;R.G.Larson;J.J.Magda https://doi.org/10.1122/1.1485277
  7. J. Rheol. v.42 Shear thickening in low-concentration solutions of wormlike micelles Ⅰ: Direct visualization of transient behavior and phase transitions Hu,Y.T.;P.Boltenhagen;P.J.Pine https://doi.org/10.1122/1.550926
  8. J. Rheol. v.42 Shear thickening in low-concentration solutions of wormlike micelles Ⅱ: Slip, fracture and stability of the shear-induced phase Hu,Y.T.;P.Boltenhagen;P.J.Pine https://doi.org/10.1122/1.550917
  9. Langmuir v.13 Shear-enhanced orientation and concentration fluctuations in wormlike micelles: effect on salt Kadoma,I.;J.W.van Egmond https://doi.org/10.1021/la970137b
  10. Proc. of Kor Soc. Rheol. Spring Annual Meeting Rheological behavior of cationic surfactant solutions Kim,C.;K.Sung
  11. Langmuir v.16 Flow-induced slica structure during in situ gelation of wormy micellar solutions Kim,W.J.;S.M.Yang https://doi.org/10.1021/la9911685
  12. The structure and rheology of complex fluids Larson,R.G.
  13. Europhys. Lett. v.19 Reptation of connected wormlike micelles Lequeux,F. https://doi.org/10.1209/0295-5075/19/8/003
  14. Rheol. Acta v.41 Comparison of drag reduction, rheology, microstructure and stress-induced precipitation of dilute cationic surfactant solutions with odd and even alkyl chains Lin,Z.;A.Mateo;E.Kesselman;E.Pancallo;D.J.Hart;Y.Talmon;T.H.Davis;L.E.Scriven;J.Zakin https://doi.org/10.1007/s00397-002-0235-1
  15. J. Colloid Interface Sci. v.239 Influence of surfactant concentration to surfactant ratio on rheology of wormlike micelles Lin,Z.;B.Lu;J.Zakin;Y.Talmon;Y.Zheng;T.H.Davis;L.E.Scriven https://doi.org/10.1006/jcis.2001.7618
  16. Phys. Rev. Lett. v.77 Shear-induced gelation and fracture in micellar solutions Liu,C.H.;D.J.Pine https://doi.org/10.1103/PhysRevLett.77.2121
  17. Phys. Rev. Lett. v.81 Self-diffusioin in wormlike micelles networks with electrostatic interactions: A universal behavior Narayanan,J.;W.Urbach;D.Langevin;C.Manohar;R.Zana https://doi.org/10.1103/PhysRevLett.81.228
  18. ACS Symposium Series v.578 Interesting Correlations between the rheology properties of rod-shaped micelles and dye assemblies Rehage,H.;Herb,C.A.(ed.);R.K.Prudhomme(ed.) https://doi.org/10.1021/bk-1994-0578.ch004
  19. Mol. Phys. v.74 Viscoelastic surfactant solutions: model systems for rheological research Rehage,H.;H.Hoffmann https://doi.org/10.1080/00268979100102721
  20. Rheol. Acta v.21 Shear induced phase transitions in highly dilute aqueous detergent solutions Rehage,H.;H.Hoffmann https://doi.org/10.1007/BF01534347
  21. Langmuir v.17 Molecularthermodynamic prediction of critical micelle concentrations of commercial surfactants Reif,I.;M.Mulqueen;D.Blankschtein https://doi.org/10.1021/la0105578
  22. Macromolecules v.28 Shear-induced orientations and textures of nematic wormlike micelles Roux,D.;J.F.Berret;G.Porte;E.Peuvrel-Disdier;P.Lindner https://doi.org/10.1021/ma00109a047
  23. Korea Australia Rheol. J. v.14 Viscoelastic behavior of aqueous surfactant micellar solutions Shikata,T.;M.Shiokawa;S.Itatani;S.Imai
  24. The phenomenological theory of linear viscoelastic behavior Tschoegl,N.W.
  25. J. Non-Newt. Fluid Mech. v.75 Time-periodic flow induced structures and instabilities in a viscoelastic surfactant solution Wheeler,E.;P.Fischer;G.G.Fuller https://doi.org/10.1016/S0377-0257(97)00084-0
  26. J. Rheol. v.32 Wall slip corrections for couette and parallel disk viscometers Yoshimura,A.;R.K.Prudhomme https://doi.org/10.1122/1.549963
  27. Adv. Colloid Interface Sci. v.97 Dimeric and oligomeric surfactants, Behavior at interfaces and in aqueous solution: a review Zana,R. https://doi.org/10.1016/S0001-8686(01)00069-0