• Title/Summary/Keyword: shear frame

Search Result 720, Processing Time 0.026 seconds

Seismic Performance of Rib Plate H Beam to Column Connections (리브로 보강된 기둥-보 접합부의 내진성능 평가)

  • Kim, Sung-Yong;Shin, Chang-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.9-16
    • /
    • 2006
  • The moment resisting frame has been well-known as it had very excellent seismic performance, and it has been widely used and constructed in the design of a lot of buildings. However, the moment resisting frame system did not exert the seismic performance during the earthquake in Northridge and Kobe sufficiently, and it produced the crack or brittle fracture on the joint. this study was to ]m tests with the full-scale test subject as parameters of existence of H-beam web high tensile bolt shearing joint and reinforcement of H-flange rib. This researcher was to anticipate the decrease of number of high tensile bolts and the improvement of workability through the double shear joint by the experiment, and improve the seismic performance through the reinforcement of rib plate. In addition, this study was to prevent the brittle fracture by the stress concentration through the non scallop.

Seismic Performance Evaluation of Seismic Strengthening Method using SRCF External Connection of Medium and Low-rise R/C Buildings (중·저층 철근콘크리트 건물의 SRCF 외부접합 내진보강공법의 내진성능 평가)

  • Lee, Kang-Seok;Jung, Jue-Seong;Lee, Jong-Kweon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.147-155
    • /
    • 2015
  • A new SRCF (Steel Reinforced Concrete Frame) external connection method for seismic strengthening of medium-and low-rise reinforced concrete buildings is reported in this paper. The SRCF method, proposed in this study, is capable of carrying out the seismic retrofitting construction while residents can live inside building. The method is one of the strength design approach by retrofit which can easily increase the ultimate lateral load capacity of concrete buildings controlled by shear. The pseudo-dynamic test, designed using a existing school building in Korea, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and deformation. Test results revealed that the proposed SRCF strengthening method installed in RC frame enhanced conspicuously the strength and deformation capacities, and the method can resist markedly under the large scaled earthquake intensity level.

Seismic Safety Assessment of Long Period Structures Base on Elastic/Inelastic Response Characteristics (장주기구조물의 탄소성응답특성을 고려한 지진안전성 평가)

  • Bang, Myung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.52-58
    • /
    • 2011
  • The earthquake characteristic assessment of social overhead facilities would be an important examination issue for seismic capacity enhancement. This study is intended to reasonably evaluate the structural behavior of longperiod frame structures considering near-fault and far-fault earthquake characteristics. Elastic/inelastic time history analyses were performd by selecting the objective structure which can precisely reflect the effect of input ground motion. Based on the result of numerical analysis, we have investigated response aspects of shear force, moment, acceleration and displacement according to earthquake characteristics. Moreover, in order to understand the inelastic behavior of the objective structure, we have analyzed and compared collapse modes by considering the occurrence process of plastic hinges. The outcome of this research is expected to provide the basic information for the seismic safety assessment of long-period frame structures.

Spatial mechanical behaviors of long-span V-shape rigid frame composite arch bridges

  • Gou, Hongye;Pu, Qianhui;Wang, Junming;Chen, Zeyu;Qin, Shiqiang
    • Structural Engineering and Mechanics
    • /
    • v.47 no.1
    • /
    • pp.59-73
    • /
    • 2013
  • The Xiaolan channel super large bridge is unique in style and with greatest span in the world with a total length of 7686.57 m. The main bridge with spans arranged as 100m+220m+100m is a combined structure composed of prestressed concrete V-shape rigid frame and concrete-filled steel tubular flexible arch. First of all, the author compiles APDL command flow program by using the unit birth-death technique and establishes simulation calculation model in the whole construction process. The creep characteristics of concrete are also taken into account. The force ratio of the suspender, arch and beam is discussed. The authors conduct studies on the three-plate webs's rule of shear stress distribution, the box girder's longitudinal bending normal stress on every construction stage, meanwhile the distribution law of longitudinal bending normal stress and transverse bending normal stress of completed bridge's box girder. Results show that, as a new combined bridge, it is featured by: Girder and arch resist forces together; Moment effects of the structure are mainly presented as compressed arch and tensioned girder; The bridge type brings the girder and arch on resisting forces into full play; Great in vertical stiffness and slender in appearance.

A study of the infill wall of the RC frame using a quasi-static pushover analysis

  • Mo Shi;Yeol Choi;Sanggoo Kang
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.455-464
    • /
    • 2023
  • Seismologists now suggest that the earth has entered an active seismic period; many earthquake-related events are occurring globally. Consequently, numerous casualties, as well as economic losses due to earthquakes, have been reported in recent years. Primarily, significant and colossal damage occurs in reinforced concrete (RC) buildings with masonry infill wall systems, and the construction of these types of structures have increased worldwide. According to a report from the Ministry of Education in the Republic of Korea, many buildings were built with RC frames with masonry infill walls in the Republic of Korea during the 1980s. For years, most structures of this type have been school buildings, and since the Pohang earthquake in 2017, the government of the Republic of Korea has paid close attention to this social event and focused on damage from earthquakes. From a long-term research perspective, damage from structural collapse due to the short column effect has been a major concern, specifically because the RC frame with a masonry infill wall system is the typical form of structure for school buildings. Therefore, the short column effect has recently been a major topic for research. This study compares one RC frame with four different types of RC frames with masonry infill wall systems. Structural damage due to the short column effect is clearly analyzed, as the result of this research is giving in a higher infill wall system produces a greater shear force on the connecting point between the infill wall system and the column. The study is expected to be a useful reference for research on the short column effect in RC frames with masonry infill wall systems.

Study on response of a new double story isolated structure under earthquakes

  • Hang Shan;Dewen Liu;Zhiang Li;Fusong Peng;Tiange Zhao;Yiran Huo;Kai Liu;Min Lei
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.17-29
    • /
    • 2024
  • The traditional double story isolated structure is a derivative of the base isolated and inter-story isolated structures, while the new double story isolated structure represents a novel variation derived from the traditional double story isolated structure. In order to investigate the seismic response of the new double story isolated structure, a comprehensive structural model was developed. Concurrently, models for the basic fixed, base isolated, inter-story isolated, and traditional double story isolated structures were also established for comparative analysis. The nonlinear dynamic time-history response of the new double story isolated structure under rare earthquake excitations was analyzed. The findings of the study reveal that, in comparison to the basic fixed structure, the new double story isolated structure exhibits superior performance across all evaluated aspects. Furthermore, when compared to the base isolated and inter-story isolated structures, the new double story isolated structure demonstrates significant reductions in inter-story shear force, top acceleration, and inter-frame displacement. The horizontal displacement of the new double story isolated structure is primarily localized within the two isolation layers, effectively dissipating the majority of input seismic energy. In contrast to the traditional double story isolated structure, the new design minimizes displacements within the inter-isolation layer situated in the central part of the frame, as well as mitigates the overturning forces acting on the lower frame column. Consequently, this design ensures the structural integrity of the core tube, thereby preventing potential collapse and structural damage.

Effect of Aspect Ratio and Diagonal Reinforcement on Shear Performance of Concrete Coupling Beams Reinforced with High-Strength Steel Bars (세장비 및 대각철근 유무에 따른 고강도 철근보강 콘크리트 연결보의 전단성능)

  • Kim, Sun-Woo;Jang, Seok-Joon;Yun, Hyun-Do;Seo, Soo-Yeon;Chun, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.43-51
    • /
    • 2017
  • As per current seismic design codes, diagonally reinforced coupling beams are restricted to coupling beams having aspect ratio below 4. However, a grouped diagonally reinforcement detail makes distribution of steel bars in the beam much harder, furthermore it may result in poor construction quality. This paper describes the experimental results of concrete coupling beam reinforced with high-strength steel bars (SD500 & SD600 grades). In order to improve workability for fabricating coupling beams, a headed large diameter steel bar was used in this study. Two full-scale coupling beams were fabricated and tested with variables of reinforcement details and aspect ratio. To reflect real behavior characteristic of the beam coupling shear walls, a rigid steel frame system with linked joints was set on the reaction floor. As a test result, it was noted that cracking and yielding of reinforcement were initially progressed at the coupling beam-to-shear wall joint, and were progressed to the mid-span of the coupling beam, based on the steel strain and failure modes. It was found that the coupling beams have sufficient deformation capacity for drift ratio of shear wall corresponding to the design displacement in FEMA 450-1. In this study, the headed horizontal steel bar was also efficient for coupling beams to exhibit shear performance required by seismic design codes. For detailed design for coupling beam reinforced with high-strength steel, however, research about the effect of variable aspect ratios on the structural behavior of coupling beam is suggested.

An equivalent model for the seismic analysis of high-rise shear wall apartments (고층 벽식 아파트의 지진해석을 위한 등가모델)

  • Kim, Tae-Wan;Park, Yong-Koo;Kim, Hyun-Jung;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.11-21
    • /
    • 2007
  • Currently in the country, the necessity of seismic analyses is increasing due to the increase of demand and interest in seismic design. Especially, shear wall apartments are constructed mostly for a residental building so seismic analyses for the apartment are actively executed. For the seismic analysis of the shear wall apartment, it may be not efficient in time and effort to model the entire structure by a finite element mesh. Therefore, an equivalent model is needed to simulate the dynamic behavior of the structure by decreasing the number of degrees of freedom. In this study, a method to form an equivalent model that is simple and easy to use was proposed utilizing effective mass coefficient that is highly correlated to mode shape of the structure. This equivalent model was obtained by replacing a shear wall structure with an equivalent frame structure having beams and columns. This model can be used very effectively when excessive seismic analyses are necessary in a short period because it can be operated in any commercial program and reduce the analysis time. Also, it can model floor slabs so it can represent the actual behavior of shear wall apartments. Furthermore, it is very excellent since it can represent the asymmetry of the structure.

The Interactive Effect of Translational Drift and Torsional Deformation on Shear Force and Torsional Moment (전단력 및 비틀림 모멘트에 의한 병진 변형 및 비틀림 변형의 상호 작용 효과)

  • Kim, In-Ho;Abegaz, Ruth A.
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.277-286
    • /
    • 2022
  • The elastic and inelastic responses obtained from the experimental and analytical results of two RC building structures under the service level earthquake (SLE) and maximum considered earthquake (MCE) in Korea were used to weinvestigate the characteristics of the mechanisms resisting shear and torsional behavior in torsionally unbalanced structures. Equations representing the interactive effect of translational drift and torsional deformation on the shear force and torsional moment were proposed. Because there is no correlation in the behavior between elastic and inelastic forces and strains, the incremental shear forces and incremental torsional moments were analyzed in terms of their corresponding incremental drifts and incremental torsional deformations with respect to the yield, unloading, and reloading phases around the maximum edge-frame drift. In the elastic combination of the two dominant modes, the translational drift mainly contributes to the shear force, whereas the torsional deformation contributes significantly to the overall torsional moment. However, this phenomenon is mostly altered in the inelastic response such that the incremental translational drift contributes to both the incremental shear forces and incremental torsional moments. In addition, the given equation is used to account for all phenomena, such as the reduction in torsional eccentricity, degradation of torsional stiffness, and apparent energy generation in an inelastic response.

Evaluation of seismic performance of mid-rise reinforced concrete frames subjected to far-field and near-field ground motions

  • Ansari, Mokhtar;Ansari, Masoud;Safiey, Amir
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.453-462
    • /
    • 2018
  • Damages to buildings affected by a near-fault strong ground motion are largely attributed to the vertical component of the earthquake resulting in column failures, which could lead to disproportionate building catastrophic collapse in a progressive fashion. Recently, considerable interests are awakening to study effects of earthquake vertical components on structural responses. In this study, detailed modeling and time-history analyses of a 12-story code-conforming reinforced concrete moment frame building carrying the gravity loads, and exposed to once only the horizontal component of, and second time simultaneously the horizontal and vertical components of an ensemble of far-field and near-field earthquakes are conducted. Structural responses inclusive of tension, compression and its fluctuations in columns, the ratio of shear demand to capacity in columns and peak mid-span moment demand in beams are compared with and without the presence of the vertical component of earthquake records. The influences of the existence of earthquake vertical component in both exterior and interior spans are separately studied. Thereafter, the correlation between the increase of demands induced by the vertical component of the earthquake and the ratio of a set of earthquake record characteristic parameters is investigated. It is shown that uplift initiation and the magnitude of tensile forces developed in corner columns are relatively more critical. Presence of vertical component of earthquake leads to a drop in minimum compressive force and initiation of tension in columns. The magnitude of this reduction in the most critical case is recorded on average 84% under near-fault ground motions. Besides, the presence of earthquake vertical components increases the shear capacity required in columns, which is at most 31%. In the best case, a direct correlation of 95% between the increase of the maximum compressive force and the ratio of vertical to horizontal 'effective peak acceleration (EPA)' is observed.