• Title/Summary/Keyword: shear frame

Search Result 720, Processing Time 0.022 seconds

Nonlinear Analysis of Large Concrete Panel Structures subjected to Cyclic Loads (반복하중을 받는 대형 콘크리트 판구조의 비선형 해석)

  • 정봉오;서수연;이원호;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.113-120
    • /
    • 1994
  • Large Concrete Panel Structures behave quite differently from frame or monolithic shear wall structures because of the weakness of Joint in stiffness and strength. The joint experiences large deformation such as shear-slip in vertical and horizontal joint and rocking and crushing in horizontal joint because of localized stress concentration, but the wall panels behave elastically under cyclic loads. In order to describe the nonlinear behavior of the joint in the analysis of PC structures, different analysis technique from that of RC structures is needed. In this paper, for analysis of large concrete panel subassemblage subjected to cyclic loads, the wall panels are idealized by elastic finite elements, and the joints by nonlinear spring elements with various load-deflection relationship. The analytical results are compared with the experimental results on the strength, stiffness, energy dissipation and lateral drift, and the effectiveness of this computer analysis modelling technique is checked.

  • PDF

A Study on Shear Connector Performance Estimation for Plan Extension of RC Apartment Structures (철근콘크리트 공동주택의 평면확장을 위한 연결부의 전단성능 평가에 관한 연구)

  • Kim, Dong Baek
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.2
    • /
    • pp.27-34
    • /
    • 2015
  • Nowadays, remodeling cases for some apartment like Hyundai through the support of government are reported. Conventionally, balcony and aisle are extended for additional private area or balcony which is supported by new frame is extended. In extension work at site, dowel bar is conventionally inserted in old concrete slab for connection with old and new slab, however, an examination for structural safety is rarely performed prior to construction, if ever, vertical load is only considered for structural analysis. When conventionally connected structures are exposed to earthquake, the old and new structures have individual earthquake behavior with different mode, which may lead the elimination of resistance to earthquake in new structures. As of this reason, new detailing connection system which can have light weight and sufficient ductility performance is developed for application to domestic extension works. Additionally, user manual and specification are also developed for fertilization of application for the developed technology.

A Comparative Study on Design by Actual Stress and Design by Member Strength in Bolt Connections (철골볼트 접합부 존재응력설계와 부재내력설계의 비교 연구)

  • 이만승
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.94-101
    • /
    • 1999
  • There are two methods commonly used in design of splice plate connection of frame structure. The one is Design by Actual Stress which can sufficiently transfer actual force to an adjacent member using rows of bolts. The other is Design by Member Strength which is able to transfer total allowable stress of effective section area to a connected member. In real design, as a matter of convenience, Standard Connection Drawings have used according to Design by Member Strength. But this method underestimate connection force in shear connection where large connection moment occured. In this study, these Design methods are compared by connection moment in shear connections. and the adequate use of them are recommended. Also In order to evaluate more accurately the actual stress of splice plate of flange on moment. connection, a new calculation method of it is recommended.

  • PDF

Finite element vibration analysis of laminated composite parabolic thick plate frames

  • Das, Oguzhan;Ozturk, Hasan;Gonenli, Can
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.43-59
    • /
    • 2020
  • In this study, free vibration analysis of laminated composite parabolic thick plate frames by using finite element method is introduced. Governing equations of an eigenvalue problem are obtained from First Order Shear Deformation Theory (FSDT). Finite element method is employed to obtain natural frequency values from the governing differential equations. The frames consist of two flat square plates and one singly curved plate. Parameters like radii of curvature, aspect ratio, ply orientation and boundary conditions are investigated to understand their effect on dynamic behavior of such a structure. In addition, multi-bay structures of such geometry with different stacking order are also taken into account. The composite frame structures are also modeled and simulated via ANSYS to verify the accuracy of the present study.

p-Version Finite Element Analysis of Stiffened Plates Including Transverse Shear Deformation (전단 변형을 고려한 보강판의 p-Version 유한요소 해석)

  • 홍종현;우광성;신영식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.145-152
    • /
    • 1995
  • A general stiffener element which includes transverse shear deformation(TSD) is formulated using the p-version of finite element method. Hierarchic C"-shape functions, derived from Integrals of Legendre polynomials, are used to define the assembled stiffness matrix of the stiffener and plate on the basis of 5 D.0.F displacement fields. The stiffness matrix for the stiffener with respect to the local reference frame is transformed to the plate reference system by applying the appropriate transformation matrices in order to insure compatibility of displacements at the junction of the stiffener and plate. The transformation matrices which account for the orientation and the eccentricity effects of the stiffener with respect to the plate reference axes are used to find local behavior at the junction of the stiffener and the relative contributions of the plate and stiffener to the strength of the composite system. The results obtained by the p-version of the finite element method are compared with the results in literatures, especially those by the h-version software, MICROFEAP-II.P-II.

  • PDF

Analysis of concrete shrinkage along truss bridge with steel-concrete composite deck

  • Siekierski, Wojciech
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1237-1257
    • /
    • 2016
  • The paper concerns analysis of effects of shrinkage of slab concrete in a steel-concrete composite deck of a through truss bridge span. Attention is paid to the shrinkage alongside the span, i.e., transverse to steel-concrete composite cross-beams. So far this aspect has not been given much attention in spite of the fact that it affects not only steel-concrete decks of bridges but also steel-concrete floors of steel frame building structures. For the problem analysis a two-dimensional model is created. An analytical method is presented in detail. A set of linear equations is built to compute axial forces in members of truss girder flange and transverse shear forces in steel-concrete composite beams. Finally a case study is shown: test loading of twin railway truss bridge spans is described, verified FEM model of the spans is presented and computational results of FEM and the analytical method are compared. Conclusions concerning applicability of the presented analytical method to practical design are drawn. The presented analytical method provides satisfactory accuracy of results in comparison with the verified FEM model.

Bridge-type structures analysis using RMP concept considering shear and bending flexibility

  • Hosseini-Tabatabaei, Mahmoud-Reza;Rezaiee-Pajand, Mohmmad;Mollaeinia, Mahmoud R.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.189-199
    • /
    • 2020
  • Researchers have elaborated several accurate methods to calculate member-end rotations or moments, directly, for bridge-type structures. Recently, the concept of rotation and moment propagation (RMP) has been presented considering bending flexibility, only. Through which, in spite of moment distribution method, all joints are free resulting in rotation and moment emit throughout the structure similar to wave motion. This paper proposes a new set of closed-form equations to calculate member-end rotation or moment, directly, comprising both shear and bending flexibility. Furthermore, the authors program the algorithm of Timoshenko beam theory cooperated with the finite element. Several numerical examples, conducted on the procedures, show that the method is superior in not only the dominant algorithm but also the preciseness of results.

Seismic performance of mid-rise steel frames with semi-rigid connections having different moment capacity

  • Bayat, Mohammad;Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.1-17
    • /
    • 2017
  • Seismic performance of hybrid steel frames defined as mixture of rigid and semi-rigid connections is investigated in this paper. Three frames with 10, 15 and 20 stories are designed with fully rigid connections and then with 4 patterns for semi-rigid connection placement, some of beam to column rigid connections would turn to semi-rigid. Each semi-rigid connection is considered with 4 different moment capacities and all rigid and semi-rigid frames consisting of 51 models are subjected to 5 selected earthquake records for nonlinear analysis. Maximum story drifts, roof acceleration and base shear are extracted for those 5 earthquake records and average values are obtained for each case. Based on numerical results for the proposed hybrid frames, story drifts remain in allowable range and the reductions in the maximum roof acceleration of 22, 29 and 25% and maximum base shear of 33, 31 and 54% occur in those 10, 15 and 20-story frames, respectively.

Linearized instability analysis of frame structures under nonconservative loads: Static and dynamic approach

  • Hajdo, Emina;Mejia-Nava, Rosa Adela;Imamovic, Ismar;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.10 no.1
    • /
    • pp.79-102
    • /
    • 2021
  • In this paper we deal with instability problems of structures under nonconservative loading. It is shown that such class of problems should be analyzed in dynamics framework. Next to analytic solutions, provided for several simple problems, we show how to obtain the numerical solutions to more complex problems in efficient manner by using the finite element method. In particular, the numerical solution is obtained by using a modified Euler-Bernoulli beam finite element that includes the von Karman (virtual) strain in order to capture linearized instabilities (or Euler buckling). We next generalize the numerical solution to instability problems that include shear deformation by using the Timoshenko beam finite element. The proposed numerical beam models are validated against the corresponding analytic solutions.

Several Issues Closely Related to Construction in the Structural Design of Wuhan Center

  • Jian, Zhou
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.3
    • /
    • pp.189-196
    • /
    • 2022
  • The practical difficulties of construction will impose many restrictions on the structural design, and the construction method can also provide unexpected ideas for solving design problems. Through the discussion of three issues closely related to construction in the structural design of Wuhan Center, this paper illustrates the importance of in-depth consideration of the construction situations in the structural design stage. The topics of "Connection between Embedded Steel Plates in Steel Plate Composite Shear Wall" and "Connection Joint between Outrigger Truss and Core Wall" are about how to facilitate on-site construction by simplifying and optimizing detail design. The topic of "Adjusting Internal Force Distribution by Optimizing Construction Sequence" is about how to make the construction process a tool for structural design.