• Title/Summary/Keyword: shear effect

검색결과 4,334건 처리시간 0.033초

Effect of the muscle nanostructure changes during post-mortem aging on tenderness of different beef breeds

  • Soji, Zimkhitha
    • Animal Bioscience
    • /
    • 제34권11호
    • /
    • pp.1849-1858
    • /
    • 2021
  • Objective: Tenderness is a very complex feature, and the process of its formation is very complicated and not fully understood. Its diversification is one of the most important problems of beef production, as a result beef aging is widely used to improve tenderness as it is believed to provide a homogeneous product to consumers. While few studies have evaluated the muscle structure properties in relation to tenderness from early post-mortem, there little to no information available on how the muscle nanostructure of beef carcasses changes during post-mortem ageing to determine the appropriate aging time for acceptable tenderness. Methods: Muscle nanostructure (myofibril diameter [MYD], myofibril spacing [MYS], muscle fibre diameter [MFD], muscle fibre spacing [MFS], and sarcomere length [SL]), meat tenderness and cooking loss [CL]) were measured on 20 A2 longissimus muscles of Bonsmara, Beefmaster, Hereford, and Simbra at 45mins, 1, 3, and 7 days post-slaughter. Muscle nanostructure was measured using a scanning electron microscope, while tenderness was measured using Warner Bratzler shear force. Results: At 45 minutes post-slaughter, breed affected MYD and MYS only, while at 24hrs it also affected MFD and MFS. On day 3 breed effected MFS and SL, while on day 7 breed effected tenderness only. As the muscles matured, both MYD and MYS decreased while CL increased, and the muscles became tender. There was no uniformity on muscle texture features (surface structure, fibre separation, muscle contraction, and relaxation) throughout the ageing period. Conclusion: Meat tenderness can be directly linked to breed related myofibril structure changes during aging in particular the MYD, spacing between myofibrils and their interaction; while the MFD, spacing between muscle fibres, SL, and CL explain the non-uniformity in beef tenderness.

층류-난류 천이 모델을 적용한 프로펠러 단독 성능 해석에 관한 CFD 시뮬레이션 (CFD Simulation on Predicting POW Performance Adopting Laminar-Turbulent Transient Model)

  • 김동현;전규목;박종천;신명수
    • 대한조선학회논문집
    • /
    • 제58권1호
    • /
    • pp.1-9
    • /
    • 2021
  • In the present study, the model-scale Propeller Open Water (POW) tests for the propeller of 176K bulk carrier and 8600TEU container ship were conducted through Computational Fluid Dynamics (CFD) simulation. In order to solve the incompressible viscous flow field, the Reynolds-averaged Navier-Stokes (RaNS) equations were employed as the governing equations. The γ-Reθ(gamma-Re-theta) transition model combined with the SST k-ωturbulence model was introduced to describe the laminar-turbulence transition considering the low Reynolds number of model-scale. Firstly, the flow simulation developing over a flat plate was performed to verify the transition modeling, in which the wall shear stresses were compared with experiments and other numerical results. Then, to investigate the effect of the model, the CFD simulation for the POW test was performed and the simulated propeller performance was validated through comparison with the experiment conducted at Korea Research Institute of Ships & Ocean Engineering (KRISO).

자동차 헤드램프 내의 에이밍 볼트의 풀림 해석 및 실험 (Analysis of Self Loosening of Aiming Bolts in Vehicle Head Lamp)

  • 문지승;백홍;박상신;박종명
    • Tribology and Lubricants
    • /
    • 제35권1호
    • /
    • pp.65-70
    • /
    • 2019
  • Self-loosening of bolts owing to external forces occurs in several machines that are clamped by bolts and nuts. This study focuses on the self-loosening of the aiming bolt of the head lamp in a vehicle. It is important to prevent the aiming bolt from self-loosening as it has a decisive effect on the angle of the head lamp. A nut clamped with a bolt, known as a retainer, is made of plastic and has a partial screw thread. In addition, a transverse load has a considerable impact on the self-loosening of a bolt. We concentrate on the self-loosening of a bolt by a transverse load. The aim of this study is to define the limits of the external force that loosen the bolt. Based on the above conditions, we derive a theoretical equation and develop a numerical analysis program that can calculate the limiting forces for self-loosening. To verify the developed program, we design a test device that can measure the self-loosening by applying sliding forces to the aiming bolt. Using this method, we can draw the following conclusions. First, the developed testing device is suitable to prove the theory for calculating the self-loosening force. Second, the equation confirms the relationship of bolt self-loosening between resistance torque and shear force. Finally, the equation obtains the minimum value of the resistance torque required to decrease the change in the angle of the head lamp, thereby improving the possibility of increasing the stability of the head lamp.

환형수조에서 흐름특성에 관한 실험적 연구 (An Experimental Study on Flow Characteristics in the Open Annular Flume)

  • 최인호;김종우
    • 한국습지학회지
    • /
    • 제21권3호
    • /
    • pp.207-214
    • /
    • 2019
  • 본 실험연구는 자유수면을 이루는 환형수조에서 초음파 유속계를 이용하여 흐름특성을 분석하였다. 여기서 점착성 유사의 응집을 방해하지 않도록 설계된 실린더의 회전에 따라 흐름이 형성되도록 하였다. 종방향 유속에 대한 내부 실린더의 영향은 이동 경계 근처에서 가장 높았고 외측 벽쪽으로는 감소했다. 종방향 저유속에서 난류 운동에너지는 바닥근처 지점에서 가장 크게 나타났지만 종방향 유속이 증가함에 따라 위쪽으로 이동하였다. 멱법칙으로 산정된 종방향 유속은 바닥 마찰길이를 고려한 대수분포형태인 로그법칙으로 예측한 값보다 실측치와 잘 일치하였다. 레이놀즈 응력 방법으로 산정한 평균마찰속도는 종방향 유속이 증가할 때 로그법칙과 멱법칙으로 계산된 값보다 작게 나타났다.

산업단지에서의 흡착 성토재로써 제올라이트 토양혼합물의 특성평가 (Assessment of Zeolite Soil Mixture as Adsorptive Fill Material at Industrial Zones)

  • 권재우;라힘;박준범
    • 대한토목학회논문집
    • /
    • 제39권1호
    • /
    • pp.203-209
    • /
    • 2019
  • 현재 많은 국내 산업단지들은 여러 가지 중금속오염에 노출되어있다. 이러한 오염은 토양과 지하수에 심각한 오염을 초래할 수 있다. 산업단지의 하부지반을 제올라이트를 토양과 섞은 혼합물로 대체하여 이러한 오염을 방지하고자 한다. 혼합물들을 성토재를 사용하기 위해서는 최소한의 지지력을 갖춰야 한다. 제올라이트 혼합물의 중금속(아연, 납)에 대한 흡착특성과 지지력을 실험하기 위하여 등온 흡착시험, 직접 전단시험, 및 표준다짐시험을 실시하였다. 실험결과, 혼합물들은 효과적으로 오염물질의 확산을 줄일 수 있고 동시에 적절한 지지력을 확보할 수 있다.

적층 복합재료 사다리꼴 주름판의 좌굴해석 (Buckling Analysis of Laminated Composite Trapezoidal Corrugated Plates)

  • 박경조;김영완
    • Composites Research
    • /
    • 제32권4호
    • /
    • pp.185-190
    • /
    • 2019
  • 본 연구에서는 단순지지 경계조건을 갖는 적층 복합재료 사다리꼴 주름판에 대한 탄성 좌굴특성을 이론적 방법을 이용하여 분석하였다. 좌굴 해석에서는 한 방향 하중, 두 방향 하중 및 전단하중 등 3가지 유형의 내평면 하중조건이 고려되었다. 3차원 주름 구조물을 해석적으로 기계적 거동을 표현하는 것이 매우 어렵기 때문에 본 해석에서는 주름판의 전반적인 좌굴 거동을 분석하기 위해 등가균질모델을 적용하였다. 이를 위해 단위 주름을 직교이방성재료로 등가시켰으며, 이전 연구에서 유도한 주름판에 대한 등가 굽힘강성계수식을 본 해석에 적용하였다. 제안된 이론해석 결과의 타당성을 검증하기 위해 셸요소를 바탕으로 한 3차원 유한요소해석을 수행하였으며, 두 방법을 이용해 얻은 임계 좌굴하중 및 좌굴형상을 비교하였다. 주름판의 기하형상에 따른 영향을 분석하기 위해 다양한 수치 예가 제시되었다.

HP-CRTM 성형공법을 적용하기 위한 NCF 복합재 적층구조에 따른 인장특성 분석 (Tensile Property Analysis of NCF Composite Laminated Structure for HP-CRTM Forming Process)

  • 변기석;신유정;정한규;박시우;노춘수;제진수;권기철
    • 한국기계가공학회지
    • /
    • 제18권1호
    • /
    • pp.59-64
    • /
    • 2019
  • In recent years, the HP-CRTM method, which has the ability to produce carbon fiber-reinforce plastic composites at high speeds, has come into the spotlight in the automotive parts industry, which demands high productivity. Multi-axial carbon fabric, an intermediate material used in this HP-CRTM molding process, consists of layered fibers without crimp, which makes it better in terms of tensile and shear strength than the original woven fabrics. The NCF (non-crimp fabric) can form the layers of the carbon fiber, which have different longitudinal and lateral directions, and ${\pm}{\theta}$ degrees, depending on the product's properties. In this research, preforms were made with carbon fibers of ${\pm}45^{\circ}$ and $0/90^{\circ}$, which were lamination structures under seven different conditions, in order to create the optimal laminated structure for automobile reinforcement center floor tunnels. Carbon fiber composites were created using each of the seven differently laminated preforms, and polyurethane was used as the base material. The specimens were manufactured in accordance with the ASTM D3039 standards, and the effect of the NCF lamination structure on the mechanical properties was confirmed by a tensile test.

Computational optimized finite element modelling of mechanical interaction of concrete with fiber reinforced polymer

  • Arani, Khosro Shahpoori;Zandi, Yousef;Pham, Binh Thai;Mu'azu, M.A.;Katebi, Javad;Mohammadhassani, Mohammad;Khalafi, Seyedamirhesam;Mohamad, Edy Tonnizam;Wakil, Karzan;Khorami, Majid
    • Computers and Concrete
    • /
    • 제23권1호
    • /
    • pp.61-68
    • /
    • 2019
  • This paper presents a computational rational model to predict the ultimate and optimized load capacity of reinforced concrete (RC) beams strengthened by a combination of longitudinal and transverse fiber reinforced polymer (FRP) composite plates/sheets (flexure and shear strengthening system). Several experimental and analytical studies on the confinement effect and failure mechanisms of fiber reinforced polymer (FRP) wrapped columns have been conducted over recent years. Although typical axial members are large-scale square/rectangular reinforced concrete (RC) columns in practice, the majority of such studies have concentrated on the behavior of small-scale circular concrete specimens. A high performance concrete, known as polymer concrete, made up of natural aggregates and an orthophthalic polyester binder, reinforced with non-metallic bars (glass reinforced polymer) has been studied. The material is described at micro and macro level, presenting the key physical and mechanical properties using different experimental techniques. Furthermore, a full description of non-metallic bars is presented to evaluate its structural expectancies, embedded in the polymer concrete matrix. In this paper, the mechanism of mechanical interaction of smooth and lugged FRP rods with concrete is presented. A general modeling and application of various elements are demonstrated. The contact parameters are defined and the procedures of calculation and evaluation of contact parameters are introduced. The method of calibration of the calculated parameters is presented. Finally, the numerical results are obtained for different bond parameters which show a good agreement with experimental results reported in literature.

Seismic pounding effects on the adjacent symmetric buildings with eccentric alignment

  • Abdel Raheem, Shehata E.;Fooly, Mohamed Y.M.;Omar, Mohamed;Abdel Zaher, Ahmed K.
    • Earthquakes and Structures
    • /
    • 제16권6호
    • /
    • pp.715-726
    • /
    • 2019
  • Several municipal seismic vulnerability investigations have been identified pounding of adjacent structures as one of the main hazards due to the constrained separation distance between adjacent buildings. Consequently, an assessment of the seismic pounding risk of buildings is superficial in future adjustment of design code provisions for buildings. The seismic lateral oscillation of adjacent buildings with eccentric alignment is partly restrained, and therefore a torsional response demand is induced in the building under earthquake excitation due to eccentric pounding. In this paper, the influence of the eccentric seismic pounding on the design demands for adjacent symmetric buildings with eccentric alignment is presented. A mathematical simulation is formulated to evaluate the eccentric pounding effects on the seismic design demands of adjacent buildings, where the seismic response analysis of adjacent buildings in series during collisions is investigated for various design parameters that include number of stories; in-plan alignment configurations, and then compared with that for no-pounding case. According to the herein outcomes, the effects of seismic pounding severity is mainly depending on characteristics of vibrations of the adjacent buildings and on the characteristics of input ground motions as well. The position of the building wherever exterior or interior alignment also, influences the seismic pounding severity as the effect of exposed direction from one or two sides. The response of acceleration and the shear force demands appear to be greater in case of adjacent buildings as seismic pounding at different levels of stories, than that in case of no-pounding buildings. The results confirm that torsional oscillations due to eccentric pounding play a significant role in the overall pounding-involved response of symmetric buildings under earthquake excitation due to horizontal eccentric alignment.

Influence of a Novel Mold Inhibitor on Mechanical Properties and Water Repellency of Bamboo Fiber-based Composites

  • Qi, Yue;Huang, Yu-Xiang;Ma, Hong-Xia;Yu, Wen-Ji;Kim, Nam-Hun;Zhang, Ya-Hui
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권3호
    • /
    • pp.336-343
    • /
    • 2019
  • Effects of a novel mold inhibitor specifically for bamboo, on the properties of composite products have been confirmed in this study. The mechanical and dimensional stability properties of bamboo fiber-based composites (BFBCs) from different bamboo species were also investigated. The results showed that Burmanica Gamble possessed the highest values of modulus of elasticity (MOE) of 33.2 GPa, modulus of rupture (MOR) of 286.9 MPa, compressive strength of 182.6 MPa and shear strength of 24.0 MPa. By contrast, Phyllostochys heterocycla among all of species showed the lowest MOE of 16.3 GPa, MOR of 170.3 MPa and compressive strength of 128.9 MPa were the lowest among all of species. Moreover, there is a remarkable variation in the swelling and water absorption between the samples with 4 h and 28 h water immersion treatment, especially Phyllostachys iridenscens. Overall, the results suggested that TCIT (Tebuconazole and 3(2H)-isothiazolone) had no significant effect on the mechanical properties compared with the control condition, and it would be utilized as an antimould of BFBCs manufacturing.