• Title/Summary/Keyword: shear effect

Search Result 4,334, Processing Time 0.033 seconds

Effects of cooling water treatment with ionized calcium on calcium content and quality of fresh chicken meat in poultry slaughtering process (도계과정 중 이온화칼슘 냉침이 닭고기 신선도 및 칼슘 함량에 미치는 영향)

  • Choi, D.H.;Park, B.S.;Jin, J.Y.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.575-586
    • /
    • 2016
  • An experiment was carried out to determine the effect of cooling water treatment with ionized calcium on calcium content, extending the shelf-life and quality of fresh chicken meat in poultry slaughtering process. The subjects were divided into four groups: control (0% without ionized calcium) and treatment groups (0.5, 0.7, 0.9% ionized calcium). The results indicated that the cooling water treatment with ionized calcium exhibited the bacterial counts of $10^5CFU/cm^2$ in surface of chicken meat, and maintained the quality of fresh chicken meat with extending the shelf-life above seven days when compared with that of control group. The results found that the cooling water treatment with ionized calcium could produce the calcium enrichment of chicken meat as nine times higher in calcium content of chicken meat when compared with that of control group. pH, water holding capacity, TBARS (MDA mg/kg) in chicken meat via the cooling water treatment with ionized calcium showed 6.4, above 50, below 0.10, respectively, with preventing the oxidation of unsaturated fatty acids. Lightness ($L^*$) as a chicken meat color, shear force indicated above 60, below $1.70kg/0.5inch^2$, respectively.

Effect of Quality Grade and Storage Time on the Palatability, Physicochemical and Microbial Quality of Hanwoo Striploin Beef

  • Yim, Dong-Gyun;Kim, Yu-Jin;Chung, Ku-Young
    • Food Science of Animal Resources
    • /
    • v.35 no.4
    • /
    • pp.449-458
    • /
    • 2015
  • The effects of quality grade and storage time on physicochemical, sensory properties and microbial population of Hanwoo striploin beef were investigated. After a total of 30 Hanwoo beef were slaughtered, the cold carcasses were graded by official meat grader at 24 h postmortem. The carcasses were categorized into five groups (quality grade 1++, 1+, 1, 2, and 3) and were vacuum-packaged and stored. The samples were kept for 1, 4, 6, 8, 11, 13, 15, 18, 20, 22 and 25 d for analyses. As the quality grade was increased, moisture, protein and ash contents decreased (p<0.05). Higher quality grade corresponded with higher fat contents. The shear force values decreased with increasing quality grade and showed decreases sharply during the first 4 d (p<0.05). pH, water holding capacity, cooking loss, and volatile basic nitrogen for grade 1++ groups were lower than for grade 3 (p<0.05). CIE L* and b* values increased as increased quality grade (p<0.05). Meat color decreased until 13 d and fluctuated after 15 d of storage (p<0.05). Regarding the sensory scores, higher quality grade corresponded with higher juiciness, tenderness, flavor, fatty and palatability scores (p<0.05). Generally, increased storage time for 15 d improved sensory scores attributes. Results indicate that a high quality grade could positively influence physicochemical and sensory properties.

Centrifuge Model Experiments and Numerical Analyses on the Behaviour of Excavated Clayey Soil (점토굴착 사면의 거동에 관한 원심모형실험 및 수치해석)

  • Choi, Min Soo;Jeong, Gil-Soo;Park, Byung-Soo;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.55-62
    • /
    • 2005
  • This paper is the results of experimental and numerical works on analyzing the geotechnical engineering behavior and characteristics of excavated clay slope formed by the method of excavated replacement which is one of treatments in soft soil ground. For the centrifuge model tests, models of excavated clay slope were prepared by remolding the marine clayey soil sampled from the field. Tests were performed with changing the slope to investigate the behavior of them. On the other hand, numerical analyses were carried out to analyze the change of safety factor against instability of slope with time. Changes of pore water pressure, shear strength and displacement were also investigated. As results of centrifuge model tests with slopes of 1:1.5 and 1:3 using the confining body of simulating the effect of excavation, for the case of 1:1.5, slope failure occurred right after remove the confining body whereas relatively small displacements within the range of 3.2mm, implying to maintain the stability of slope, were observed for the case of 1:3 slope. From the results of numerical analyses using the software of PLAXIS to investigate the stability of slope after excavation, the minimum safety factor against slope failure was 1.28 for the case of 1:3 slope. The further researches in the future are required with considerations of build up of static pore water pressures during acceleration of centrifuge, depth of excavation influencing the behavior of the slope and permeability of the slope since excavation of the slope was not simulated well resulted from the limitations of apparatus at the stage of excavation during the centrifuge tests.

  • PDF

Study on the Sheet Rolling by a Rigid-Plastic Finite Element Method Considering Large Deformation Formulation (강소성 대변형 유한요소법을 이용한 판재 압연연구)

  • 김동원;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.145-153
    • /
    • 1991
  • A numerical simulation of the nonsteady state rolling process in the plane strain condition is presented in the basis of the rigid-plastic finite element method by considering large deformation. In order to apply the large deformation theory to the numerical method for sheet rolling problems, constitutive equation relating 2nd-Piola Kirchhoff stress and Lagrangian strain which reflect geometrical nonlinearity is used. To confirm the validity of the developed algorithm, the analysis of the neutral flow region, roll separating force, torque, pressure and stress/strain distributions on the workpiece is conducted from the bite of the material until the steady state is reached. The computed results of the roll force and torque in the present finite element analysis are lower than those corresponding to small strain theory. The pressure distribution at the work piece-roll interface is found to show the typical 'friction hill' type only. The peak value in near the neutral region, however, is good agrements with the existing results. the neutral region, however, is good agrements with the existing results. The frictional force at the roll interface provide detailed information about the neutral point where the shear forces change direction. In addition, the analysis also includes the effect and influence of material condition, strip thickness, work roll diameter, as well as roll speed and lubricant on each deformation process.

Analytical Study on Interface Debonding of Reinforced Concrete Beams Strengthened with Carbon Fiber Sheet(CFS) (탄소섬유쉬트로 보강된 철근콘크리트보의 계면박리에 대한 해석적 연구)

  • Sim, Jong-Sung;Bae, In-Hwan
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.177-186
    • /
    • 1999
  • The purpose of this study is to analyze the interface debonding of RC beams strengthened by carbon fiber sheet(CFS). The behavior of damaged RC beams strengthened with CFS is analytically investigated next using linear elastic fracture mechanics(LEFM) approach and the finite element method. The study includes an investigation of the separation mode by interface fracture of the strengthening materials due to the interfacial shear and normal stresses. The numerical method is presented to obtain the value of interfacial fracture parameter such as the strain energy release rate. Based on the results of this study, it is found that the critical case occurs when the interfacial cracks occur within a short region of the flexural crack. The CFS strengthening has not an adequate factor of safety against interfacial debonding of CFS. Furthermore, for the thicknesses of the adhesive studied[1mm~3mm], it is no noticeable effect on the strain energy release rate.

Development of Frictional Wall Damper and Its Analytical Applications in R/C frame Structures (벽식마찰감쇄기의 개발 및 R/C 골조구조물에의 해석적 적용)

  • 조창근;박문호;권민호;강구수;서상길
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.718-725
    • /
    • 2002
  • A wall type friction damper is newly Proposed in this paper to improve the performance of R/C framed structures under earthquake loads. Although traditional dampers are usually placed as bracing members, the application ot bracing-type dampers into R/C structures is not as simple as those of steel structures due to the connection between R/C members and dampers and the stress concentration in connection region. Proposed damper is consisted of Teflon-sheet slider and R/C shear wall. The damper can also avoid stress concentration and reduce P-Δ effect. To evaluate the performance of proposed damper, nonlinear dynamic analyses are carried on 10 story and 3 bay R/C structures with numerical model for the damper. It is shown that the damper reduces the inter-story drifts and the time-historic responses; especially the damper prevents from forming plastic hinges on the lower columns.

Consolidation Characteristics of Soft Ground with Artesian Pressure (피압에 따른 연약지반의 압밀 거동)

  • Yun, Daeho;Kim, Jaehong;Kim, Yuntae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.2
    • /
    • pp.31-39
    • /
    • 2016
  • Vertical drain has usually been used to accelerate the consolidation of soft clay deposits with high moisture content. Busan thick clay deposits are subjected to artesian pressure from an aquifer in sand and gravel layers. However, effect of artesian pressure existing in drainage-installed soft ground on consolidation behaviors is not well known. This paper investigates the consolidation behavior of drainage-installed soft ground at the Nakdong river estuary with artesian pressure and without artesian pressure. A series of one-dimensional large size column test was carried out to find out the consolidation characteristics of clay. Test results indicated that total settlement of clay with artesian pressure was higher than that without artesian pressure because effective stress decreased due to upward flow. Dissipation rate of excess pore water pressure delayed and excess pore water pressure did not fully dissipate in clay layer with artesian pressure. Undrained shear strength of clay ground with artesian pressure was lower than that without artesian pressure.

Characteristics of Behavior of Brain Board - driven Clay Layers by Vacuum Loading (진공하중에 의한 Drain Board 타입 점토지반의 거동 특성)

  • Lee, Song;Yang, Tae-Seon;Park, Jong-Chan;Paik, Young-Shik
    • Geotechnical Engineering
    • /
    • v.9 no.1
    • /
    • pp.45-58
    • /
    • 1993
  • Paper drain method is one of the methods used for the improvement of soft clay as hydraulic fill sites or the seaside industrial complex. This method adopts a card board as the drain materials instead of sand piles in sand drain method. In this paper 3 types of drain board are used to fond out the characteristics of consolidation by vacuum consolidation model test. So does the no drain board test. This test causes the reduction of pore water pressure to promote the settlement without change of ground water level. Conclusively, the vacuum consolidation shows 3-dimensional behaviors and pore water pressure reaches a negative value in a short time. In addition, it is expected to have a comparatively good consolidation effect using non -woven board, and vacuum loading results in increasing the shear strength at the bottom and top of call layers.

  • PDF

Effects of Onion Extracts on Growth Performance, Carcass Characteristics and Blood Profiles of White Mini Broilers

  • An, B.K.;Kim, J.Y.;Oh, S.T.;Kang, C.W.;Cho, S.;Kim, S.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.247-251
    • /
    • 2015
  • This experiment was carried out to investigate effects of onion extract on growth performance, meat quality and blood profiles of White mini broilers. Total of 600 one-d-old male White mini broiler chicks were divided into four groups and fed control diets (non-medicated commercial diet or antibiotics medicated) or experimental diets (non-medicated diets containing 0.3% or 0.5% onion extract) for 5 wks. The final body weight (BW) and weight gain of the group fed non-medicated control diet were lower than those of medicated control group (p<0.01). The chicks fed diet with 0.3% or 0.5% onion extract showed a similar BW to that of medicated control group. The relative weight of various organs, such as liver, spleen, bursa of Fabricius, abdominal fat, and the activities of serum enzymes were not affected by dietary treatments. There were no significant differences in meat color among groups. Whereas, groups fed diets containing onion extract had slightly lower cooking loss and higher shear force value, but not significantly. The concentrations of serum free cholesterol and triacylglycerol in groups fed diet containing onion extract were significantly decreased compared with those of controls (p<0.01). In conclusion, the onion extracts exerted a growth-promoting effect when added in White mini broiler diets, reflecting potential alternative substances to replace antibiotics.

Parametric Study of 2.5 kW Class Propeller Type Micro Hydraulic Turbine (2.5 kW 급 프로펠러형 마이크로 수차 매개변수 연구)

  • MA, SANG-BUM;KIM, SUNG;CHOI, YOUNG-SEOK;CHA, DONG-AN;KIM, JIN-HYUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.4
    • /
    • pp.387-394
    • /
    • 2020
  • A parametric study of a 2.5 kW class propeller type micro hydraulic turbine was performed. In order to analyze the internal flow characteristics in the hydraulic turbine, three dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model were used and the hexahedral grid system was used to construct computational domain. To secure the reliability of the numerical analysis, the grid dependency test was performed using the grid convergence index method based on the Richardson extrapolation, and the grid dependency was removed when about 1.7 million nodes were used. For the parametric study, the axial distance at shroud span (L) between the inlet guide vane and the runner, and the inlet and outlet blade angles (β1, β2) of the runner were selected as the geometric parameters. The inlet and outlet angles of the runner were defined in the 3 spans from the hub to tip, and a total of 7 geometric parameters were investigated. It was confirmed that the outlet angles of the runner had the most sensitive effect on the power and efficiency of the micro hydraulic turbine.