The behavior of steel-concrete composite beams is strongly influenced by the type of shear connection between the steel beam and the concrete slab. For accurate analytical predictions, the structural model must account for the interlayer slip between these two components. This paper focuses on a procedure for response sensitivity analysis using state-of-the-art finite elements for composite beams with deformable shear connection. Monotonic and cyclic loading cases are considered. Realistic cyclic uniaxial constitutive laws are adopted for the steel and concrete materials as well as for the shear connection. The finite element response sensitivity analysis is performed according to the Direct Differentiation Method (DDM); its analytical derivation and computer implementation are validated through Forward Finite Difference (FFD) analysis. Sensitivity analysis results are used to gain insight into the effect and relative importance of the various material parameters in regards to the nonlinear monotonic and cyclic response of continuous composite beams, which are commonly used in bridge construction.
The formulation of a non-linear shear deformable shell element is presented for the solution of stability problems of stiffened plates and shells. The formulation of the geometrical stiffness presented here is exactly defined on the midsurface and is efficient for analyzing stability problems of thick plates and shells by incorporating bending moment and transverse shear resultant force. As a result of the explicit integration of the tangent stiffness matrix, this formulation is computationally very efficient in incremental nonlinear analysis. The element is free of both membrane and shear locking behaviour by using the assumed strain method such that the element performs very well in the thin shells. By using six degrees of freedom per node, the present element can model stiffened plate and shell structures. The formulation includes large displacement effects and elasto-plastic material behaviour. The material is assumed to be isotropic and elasto-plastic obeying Von Mises's yield condition and its associated flow rules. The results showed good agreement with references and computational efficiency.
An analytical solution of the buckling governing equations of functionally graded piezoelectric (FGP) nanobeams obtained by using a developed third-order shear deformation theory is presented. Electro-mechanical properties of FGP nanobeam are supposed to change continuously in the thickness direction based on power-law model. To capture the small size effects, Eringen's nonlocal elasticity theory is adopted. Employing Hamilton's principle, the nonlocal governing equations of a FG nanobeams made of piezoelectric materials are obtained and they are solved using Navier-type analytical solution. Results are provided to show the effect of different external electric voltage, power-law index, nonlocal parameter and slenderness ratio on the buckling loads of the size-dependent FGP nanobeams. The accuracy of the present model is verified by comparing it with nonlocal Timoshenko FG beams. So, this study makes the first attempt for analyzing buckling behavior of higher order shear deformable FGP nanobeams.
The present article deals with post-buckling of geometrically imperfect concrete plates reinforced by graphene oxide powder (GOP) based on general higher order plate model. GOP distributions are considered as uniform and linear models. Utilizing a shear deformable plate model having five field components, it is feasible to verify transverse shear impacts with no inclusion of correction factor. The nonlinear governing equations have been solved via an analytical trend for deriving post-buckling load-deflection relations of the GOP-reinforced plate. Derived findings demonstrate the significance of GOP distributions, geometric imperfectness, foundation factors, material compositions and geometrical factors on post-buckling properties of reinforced concrete plates.
Kim, Sung-Kyun;Lee, Kune-Woo;Moon, Jei-Kwon;Choi, Jong-Woon;Kim, Young-Jun;Park, Sang-Yun;Song, Oh-Seop
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2011.04a
/
pp.681-688
/
2011
Structural model of laminated composite plates based on the first order shear deformable plate theory and subjected to a combination of magnetic and thermal fields is developed. Coupled equations of motion are derived via Hamilton's principle on the basis of electromagnetic equations (Faraday, Ampere, Ohm, and Lorenz equations) and thermal equations which are involved in constitutive equations. In order to obtain the implications of a number of geometrical and physical features of the model, one special case is investigated, that is, free vibration of a composite plate immersed in a transversal magnetic field. Special coupling effects between the magnetic and elastic fields are revealed in this paper.
Ferrarotti, Alberto;Ranzi, Gianluca;Taig, Gerard;Piccardo, Giuseppe
Steel and Composite Structures
/
v.25
no.5
/
pp.625-638
/
2017
This paper presents a novel approach that describes the first-order (linear elastic) partial interaction analysis of members formed by multi-components based on the Generalised Beam Theory (GBT). The novelty relies on its ability to accurately model the partial interaction between the different components forming the cross-section in both longitudinal and transverse directions as well as to consider the cross-sectional deformability. The GBT deformations modes, that consist of the conventional, extensional and shear modes, are determined from the dynamic analyses of the cross-section represented by a planar frame. The partial interaction is specified at each connection interface between two adjacent elements by means of a shear deformable spring distributed along the length of the member. The ease of use of the model is outlined by an application performed on a multi-component member subjected to an eccentric load. The values calculated with an ABAQUS finite element model are used to validate the proposed method. The results of the numerical applications outline the influence of specifying different rigidities for the interface shear connection and in using different order of polynomials for the shape functions specified in the finite element cross-section analysis.
Ebrahimi, Farzad;Barati, Mohammad Reza;Zenkour, Ashraf M.
International Journal of Aeronautical and Space Sciences
/
v.18
no.2
/
pp.255-269
/
2017
Free vibration analysis is presented for a simply-supported, functionally graded piezoelectric (FGP) nanobeam embedded on elastic foundation in the framework of third order parabolic shear deformation beam theory. Effective electro-mechanical properties of FGP nanobeam are supposed to be variable throughout the thickness based on power-law model. To incorporate the small size effects into the local model, Eringen's nonlocal elasticity theory is adopted. Analytical solution is implemented to solve the size-dependent buckling analysis of FGP nanobeams based upon a higher order shear deformation beam theory where coupled equations obtained using Hamilton's principle exist for such beams. Some numerical results for natural frequencies of the FGP nanobeams are prepared, which include the influences of elastic coefficients of foundation, electric voltage, material and geometrical parameters and mode number. This study is motivated by the absence of articles in the technical literature and provides beneficial results for accurate FGP structures design.
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.17
no.2
/
pp.67-85
/
2013
Reproducing Polynomial Particle Method (RPPM) is one of meshless methods that use meshes minimally or do not use meshes at all. In this paper, the RPPM is employed for free vibration analysis of shear-deformable plates of the first order shear deformation model (FSDT), called Reissner-Mindlin plate. For numerical implementation, we use flat-top partition of unity functions, introduced by Oh et al, and patchwise RPPM in which approximation functions have high order polynomial reproducing property and the Kronecker delta property. Also, we demonstrate that our method is highly effective than other existing results for various aspect ratios and boundary conditions.
In this paper, a shear-flexible finite element model is developed for the buckling analysis of axially loaded, thin-walled composite I-beams. Based on an orthogonal Cartesian coordinate system, the displacement fields are defined using the first-order shear-deformable beam theory. The derived element takes into account flexural shear deformation and torsional warping deformation. Three different types of beam elements, namely, the two-noded, three-noded, and four-noded beam elements, were developed to solve the governing equations. An inverse iteration with shift eigenvalue solution was used to solve the resulting linearized buckling problem. A parametric study was conducted to show the importance of shear flexibility and fiber orientation on the buckling behavior of thin-walled composite beams. A good agreement was obtained among the proposed shear-flexible model, other results available in literature, and the finite element solution.
Present investigation deals with the free vibration characteristics of nanoscale-beams resting on elastic Pasternak's foundation based on nonlocal strain-gradient theory and a higher order hyperbolic beam model which captures shear deformation effect without using any shear correction factor. The nanobeam is lying on two-parameters elastic foundation consist of lower spring layers as well as a shear layer. Nonlocal strain gradient theory takes into account two scale parameters for modeling the small size effects of nanostructures more accurately. Hamilton's principal is utilized to derive the governing equations of embedded strain gradient nanobeam and, after that, analytical solutions are provided for simply supported conditions to solve the governing equations. The obtained results are compared with those predicted by the previous articles available in literature. Finally, the impacts of nonlocal parameter, length scale parameter, slenderness ratio, elastic medium, on vibration frequencies of nanosize beams are all evaluated.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.