DOI QR코드

DOI QR Code

PATCHWISE REPRODUCING POLYNOMIAL PARTICLE METHOD FOR THICK PLATES: BENDING, FREE VIBRATION, AND BUCKLING

  • Kim, Hyunju (Department of Mathematics and Statistics, University of North Carolina at Charlotte) ;
  • Jang, Bongsoo (School of Technology Management, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2012.12.14
  • Accepted : 2013.02.19
  • Published : 2013.06.25

Abstract

Reproducing Polynomial Particle Method (RPPM) is one of meshless methods that use meshes minimally or do not use meshes at all. In this paper, the RPPM is employed for free vibration analysis of shear-deformable plates of the first order shear deformation model (FSDT), called Reissner-Mindlin plate. For numerical implementation, we use flat-top partition of unity functions, introduced by Oh et al, and patchwise RPPM in which approximation functions have high order polynomial reproducing property and the Kronecker delta property. Also, we demonstrate that our method is highly effective than other existing results for various aspect ratios and boundary conditions.

References

  1. S. Atluri and S. Shen, The Meshless Method, Tech Science Press, 2002.
  2. I. Babuska, U. Banerjee, and J.E. Osborn, Survey of meshless and generalized finite element methods: A unified approach, Acta Numerica, Cambridge Press, 2003, 1-125.
  3. I. Babuska, U. Banerjee, and J.E. Osborn, On the approximability and the selection of particle shape functions, Numer. math, 96, (2004), 601-640. https://doi.org/10.1007/s00211-003-0489-2
  4. T. Belytschko, D. Organ, and Y. Krongauz, A coupled finite element-element-free Galerkin method, Comput. Mech., 173(3), (1995), 186-195.
  5. C.W. Bert and M. Malik, The differential quadrature method for irregular domains and application to plate vibration, International Journal of Mechanical Sciences, 38(6), (1996), 589-606. https://doi.org/10.1016/S0020-7403(96)80003-8
  6. S. Brenner and R. Scott, The mathematical theory of finite element methods, Springer, 1994.
  7. P.G. Ciarlet, Basic error estimates for elliptic problems, Handbook of Numerical Analysis Vol. II, North- Holland, 1991.
  8. D.J. Dawe and O.L. Roufaeil, Rayleigh-Ritz vibration analysis of Mindlin plates, Journal of Sound and Vibration, 45(1), (1980), 113-120.
  9. D.J. Dawe and O.L. Roufaeil, Rayleigh-Ritz vibration analysis of Mindlin plates, J. of Sound & Vibration, 69(3), (1980), 345-359. https://doi.org/10.1016/0022-460X(80)90477-0
  10. D.J. Dawe and S. Wang, Spline finite strip analysis of the buckling and vibration of rectangular composite laminated plates, International Journal of Mechanical Sciences, 37(6), (1995), 589-606.
  11. Duarte C.A. and J.T. Oden, An hp adaptive method using clouds, Computer methods in App. Mech. Engrg, 139, (1996), 237-262. https://doi.org/10.1016/S0045-7825(96)01085-7
  12. A.J.M. Ferreira, MatLab Codes for Finite Element Analysis (Solids and Structures), Springer, 2009.
  13. M. Griebel and M.A. Schweitzer, Meshfree Methods for partial Differential Equations I, Lect. Notes in Compu. Science and Engr., Springer, 57, 2003.
  14. M. Griebel and M.A. Schweitzer, Meshfree Methods for partial Differential Equations II, Lect. Notes in Compu. Science and Engr., Springer, 43, 2005.
  15. M. Griebel and M.A. Schweitzer, Meshfree Methods for partial Differential Equations III, Lect. Notes in Compu. Science and Engr., Springer, 26, 2007.
  16. W. Han and X. Meng, Error analysis of reproducing kernel particle method, Comput. Meth. Appl. Mech. Engrg., 190, (2001), 6157-6181. https://doi.org/10.1016/S0045-7825(01)00214-6
  17. E. Hinton, Numerical methods and software for dynamic analysis of plates and shells, Pineridge Press, Swansea, U.K., 1988.
  18. S. Kitipornchai, Y. Xiang, C.M.Wang, and K.M. Liew, Buckling of thick skew plates, International Journal for Numerical Methods in Engineering, 36, (1993), 1299-1310. https://doi.org/10.1002/nme.1620360804
  19. K.M. Liew, C.M. Wang, Y. Xiang, and S. Kitipornchai, Vibration of Mindlin Plates, Elsevier, Amsterdam, 1998.
  20. S. Li and W.K. Liu, Meshfree Particle Methods, Springer-Verlag, 2004.
  21. S. Li, Lu, H.,W. Han.,W.K. Liu, and D.C. Simkins Jr., Reproducing Kernel Element Method: Part II. Globally Conforming $I^m$/$C^n$ hierarchies, Computer Methods in App. Mech. and Engrg, 193, (2004), 953-987. https://doi.org/10.1016/j.cma.2003.12.002
  22. K.M. Liew, J. Wang, T.Y. Ng, and M.J. Tan, Free vibration and buckling analyses of shear-deformable plates based on FSDT meshfree method, J. of Sound & Vibration, 276, (2004), 997-1017. https://doi.org/10.1016/j.jsv.2003.08.026
  23. K.M. Liew, Y. Xiang, and S. Kitipornchai, Research on thick plate vibration: a literature survey, Journal of Sound and Vibration, 180(1), (1995), 163-176. https://doi.org/10.1006/jsvi.1995.0072
  24. G.R. Liu and X.L. Chen, A mesh-free method for static and free vibration analysises of thin plates of complicated shape, J. Sound and Vibration, 241(5), (2001), 839-853. https://doi.org/10.1006/jsvi.2000.3330
  25. W.K. Liu, W. Han, H. Lu, Li, S., and J. Cao, Reproducing Kernel Element Method: Part I. Theoretical formulation, Computer Methods in App. Mech. and Engrg, 193, (2004), 933-951. https://doi.org/10.1016/j.cma.2003.12.001
  26. W.K. Liu, S. Jun, and Y.F. Zhang, Reproducing Kernel Particle Methods, International Journal for Numerical Methods in Fluids, 20, (1995), 1081-1106. https://doi.org/10.1002/fld.1650200824
  27. W.K. Liu, S. Li, and T. Belytschko, Moving Least Square Reproducing Kernel Method Part I: Methodology and Convergence, Computer Methods in Applied Mechanics and Engineering, 143, (1997), 422-453.
  28. W.K. Liu, S. Jun Liu, S. Li, J. Adee, and T. Belytschko, Reproducing Kernel Particle Methods for Structural Dynamics, International Journal for Numerical Methods in Engineering, 38, (1995), 1655-1679. https://doi.org/10.1002/nme.1620381005
  29. V.V. Meleshko, Bending of an Elastic rectangular clamped plate: Exact versus Engineering solutions, Journal of Elasticity, 48, (1997), 1-50. https://doi.org/10.1023/A:1007472709175
  30. A.K. Noor, Free vibrations of multilayered composite plates, American Institute of Aeronautics and Astronautics Journal, 11(7), (1973), 1038-1039. https://doi.org/10.2514/3.6868
  31. B. Szabo and I. Babuska, Finite element analysis, John Wiley, 1991.
  32. H.-S. Oh and J. W. Jeong, reproducing Polynomial (Singularity) Particle Methods and Adaptive Meshless Methods for Two-Dimensional Elliptic Boundary Value Problems, Comput. Methods Appl. Mech. Engrg., 198, (2009), 933-946. https://doi.org/10.1016/j.cma.2008.11.005
  33. H.-S. Oh and J.W. Jeong, Almost Everywhere Partition of Unity to deal with Essential boundary Conditions in Meshless Methods, Compt. Meth. Appl. Mech. Eng., 198, (2009), 3299-3312. https://doi.org/10.1016/j.cma.2009.06.013
  34. H.-S. Oh, J.W. Jeong, and W.T. Hong, The generalized product partition of unity for the meshless methods, Journal of Comp. Phy., 229, (2010), 1600-1620. https://doi.org/10.1016/j.jcp.2009.10.047
  35. H.-S. Oh, J.W. Jeong and J. G. Kim, The Reproducing Singularity Particle Shape function for problems containing singularities, Comput Mech, 41, (2007), 135-157. https://doi.org/10.1007/s00466-007-0174-x
  36. H.-S. Oh, J. G. Kim, and W.T. Hong, The Piecewise Polynomial Partition of Unity Shape Functions for the Generalized Finite Element Methods, Comput. Methods Appl. Mech. Engrg., 197, (2008), 3702-3711. https://doi.org/10.1016/j.cma.2008.02.035
  37. H.-S. Oh, J.G. Kim, and J.W. Jeong, The Closed Form Reproducing Polynomial Particle Shape Functions for Meshfree Particle Methods, Comput. Methods Appl. Mech. Engrg., 196, (2007), 3435-3461. https://doi.org/10.1016/j.cma.2007.03.012
  38. H.-S. Oh, J.G. Kim, and J.W. Jeong, The smooth piecewise polynomial particle shape functions corresponding to patchwise non-uniformly spaced particles for meshfree particles methods, Computational Mechanics, 40, (2007), 569-594. https://doi.org/10.1007/s00466-006-0126-x
  39. J.N. Reddy, A review of refined theories of laminated composite plates, The Shock and Vibration Digest, 22(7), (1990), 3-17.
  40. J.N. Reddy, Theory and Analysis of Elastic Plates, Second Edition, CRC Press, 2006.
  41. J.N. Reddy and A.A. Khdeir, Buckling and vibration of laminated composite plates using various plate theories, American Institute of Aeronautics and Astronautics Journal, 27(12), (1989), 1808-1817. https://doi.org/10.2514/3.10338
  42. T. Stroubolis, K. Copps, and I. Babuska, Generalized Finite Element method, Comput. Methods Appl. Mech. Engrg., 190, (2001), 4081-4193. https://doi.org/10.1016/S0045-7825(01)00188-8
  43. T. Stroubolis, L. Zhang, and I. Babuska, Generalized Finite Element method using mesh-based handbooks: application to problems in domains with many voids, Comput. Methods Appl. Mech. Engrg., 192,, (2003), 3109-3161. https://doi.org/10.1016/S0045-7825(03)00347-5
  44. A. Tessler, E. Saether, and T. Tsui, Vibration of thick laminated composite plates, Journal of Sound and Vibration, 179(3), (1995), 475-498. https://doi.org/10.1006/jsvi.1995.0031
  45. H. Zeng and C.W. Bert, A differential quadrature analysis of vibration for rectangular stiffened plates, Journal of Sound and Vibration, 241(2), (2001), 247-252. https://doi.org/10.1006/jsvi.2000.3295