• Title/Summary/Keyword: shear construction

Search Result 1,766, Processing Time 0.028 seconds

Experimental and numerical study on mechanical behavior of RC shear walls with precast steel-concrete composite module in nuclear power plant

  • Haitao Xu;Jinbin Xu;Zhanfa Dong;Zhixin Ding;Mingxin Bai;Xiaodong Du;Dayang Wang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2352-2366
    • /
    • 2024
  • Reinforced concrete (RC) shear walls with precast steel-concrete composite modular (PSCCM) are strongly recommended in the structural design of nuclear power plants due to the need for a large number of process pipeline crossings and industrial construction. However, the effect of the PSCCM on the mechanical behavior of the whole RC shear wall is still unknown and has received little attention. In this study, three 1:3 scaled specimens, one traditional shear wall specimen (TW) and two shear wall specimens with the PSCCM (PW1, PW2), were designed and investigated under cyclic loadings. The failure mode, hysteretic curve, energy dissipation, stiffness and strength degradations were then comparatively investigated to reveal the effect of the PSCCM. Furthermore, numerical models of the RC shear wall with different PSCCM distributions were analyzed. The results show that the shear wall with the PSCCM has comparable mechanical properties with the traditional shear wall, which can be further improved by adding reinforced concrete constraints on both sides of the shear wall. The accumulated energy dissipation of the PW2 is higher than that of the TW and PW1 by 98.7 % and 60.0 %. The failure of the shear wall with the PSCCM is mainly concentrated in the reinforced concrete wall below the PSCCM, while the PSCCM maintains an elastic working state as a whole. Shear walls with the PSCCM arranged in the high stress zone will have a higher load-bearing capacity and lateral stiffness, but will suffer a higher risk of failure. The PSCCM in the low stress zone is always in an elastic working state.

An Experimental Study for Development of Details and Design Method of CFT Column-to-RC Flat Plate Connections (콘크리트 충전각형강관 (CFT)기둥과 철근콘크리트 무량판 접합부 상세 및 설계법 개발을 위한 실험연구)

  • Lee, Cheol Ho;Kim, Jin Won;Oh, Jeong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.481-490
    • /
    • 2005
  • This paper summarizes the full-scale test results on the CFT column-to-flat plate connections subjected to gravity loading. CFT construction has gained wide acceptance in a relatively short time in domestic building construction practice due to its various structural and construction advantages. Constructing an underground parking floor as a flat plate system is often regarded as essential for both cost savings and rapid construction. Efficient details for CFT-column-to-flat-plate connections have not been proposed yet, however, and their development is urgently needed. Based on some strategies that maximize economical field construction, several connecting schemes were proposed and tested based on a full-scale model. The test results showed that the proposed connection details can exhibit punching shear strength and connection stiffness comparable to or greater than those of their R/C flat plate counterpart.

Optimization of construction support scheme for foundation pits at zero distance to both sides of existing stations based on the pit corner effect

  • Tonghua Ling;Xing Wu;Fu Huang;Jian Xiao;Yiwei Sun;Wei Feng
    • Geomechanics and Engineering
    • /
    • v.38 no.4
    • /
    • pp.381-395
    • /
    • 2024
  • With the wide application of urban subway tunnels, the foundation pits of new stations and existing subway tunnels are becoming increasingly close, and even zero-distance close-fitting construction has taken place. To optimize the construction support scheme, the existing tunnel's vertical displacement is theoretically analyzed using the two-stage analysis method to understand the action mechanism of the construction of zero-distance deep large foundation pits on both sides of the existing stations; a three-dimensional numerical calculation is also performed for further analysis. First, the additional stress field on the existing tunnel caused by the unloading of zero-distance foundation pits on both sides of the tunnel is derived based on the Mindlin stress solution of a semi-infinite elastic body under internal load. Then, considering the existing subway tunnel's joints, shear stiffness, and shear soil deformation effect, the tunnel is regarded as a Timoshenko beam placed on the Kerr foundation; a sixth-order differential control equation of the tunnel under the action of additional stress is subsequently established for solving the vertical displacement of the tunnel. These theoretical calculation results are then compared with the numerical simulation results and monitoring data. Finally, an optimized foundation pit support scheme is obtained considering the pit corner effect and external corner failure mode. The research shows a high consistency between the monitoring data,analytical and numerical solution, and the closer the tunnel is to the foundation pit, the more uplift deformation will occur. The internal corner of the foundation pit can restrain the deformation of the tunnel and the retaining structure, while the external corner can cause local stress concentration on the diaphragm wall. The proposed optimization scheme can effectively reduce construction costs while meeting the safety requirements of foundation pit support structures.

Real-time hybrid simulation of a multi-story wood shear wall with first-story experimental substructure incorporating a rate-dependent seismic energy dissipation device

  • Shao, Xiaoyun;van de Lindt, John;Bahmani, Pouria;Pang, Weichiang;Ziaei, Ershad;Symans, Michael;Tian, Jingjing;Dao, Thang
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1031-1054
    • /
    • 2014
  • Real-time hybrid simulation (RTHS) of a stacked wood shear wall retrofitted with a rate-dependent seismic energy dissipation device (viscous damper) was conducted at the newly constructed Structural Engineering Laboratory at the University of Alabama. This paper describes the implementation process of the RTHS focusing on the controller scheme development. An incremental approach was adopted starting from a controller for the conventional slow pseudodynamic hybrid simulation and evolving to the one applicable for RTHS. Both benchmark-scale and full-scale tests are discussed to provide a roadmap for future RTHS implementation at different laboratories and/or on different structural systems. The developed RTHS controller was applied to study the effect of a rate-dependent energy dissipation device on the seismic performance of a multi-story wood shear wall system. The test specimen, setup, program and results are presented with emphasis given to inter-story drift response. At 100% DBE the RTHS showed that the multi-story shear wall with the damper had 32% less inter-story drift and was noticeably less damaged than its un-damped specimen counterpart.

Analytical Study on the Shear Behavior of Prestressed Concrete Deep Beams (프리스트레스트 콘크리트 깊은 보의 전단거동에 관한 해석적 연구)

  • Kim, Tae-Hoon;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.511-517
    • /
    • 2010
  • The purpose of this study is to investigate the shear behavior of prestressed concrete deep beams and to provide the data for development of improved design criteria. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. Hence, in this study, the computer program, named RCAHEST (reinforced concrete analysis in higher evaluation system technology), was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. A bonded or unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. The proposed numerical method for the shear behavior of prestressed concrete deep beams is verified by comparing the analytical results with test data by others.

Estimation of Shear Strength of Discontinuous (bedding) Cut Sedimentary Rock Slope by Using Back Analysis (역해석을 통한 퇴적암 절취비탈면 불연속면(층리)의 전단강도 추정)

  • Kim, Chang-Ho;Kim, Bong-Yong;Park, Tae-Wan;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.139-152
    • /
    • 2018
  • This study is an analysis of slope failure examples of cut sedimentary hills during construction road in Kyoungsang Basin, especially Yangsan Fault system (Ilkwang-Dongrae fault). This area involved a lot of hillslope failures compared to other areas during road construction. The exposed failure slopes were first face-mapped, and then back analyzed based on the limit equilibrium method to assess the shear strength parameters of discontinuity (bedding). The results of this analysis indicate that the shear strength parameters of discontinuity (bedding) are significantly smaller than those used in the design stage and presented in the existing works. The filling in the bedding and emerging groundwater may be decreasing strength parameters. Especially, the clay in the bedding plays a key role in the effect of the shear strength. The study also suggests that the bedding angle and the internal friction angle are proportional to each other. Using this relationship and knowing the bedding angle, the friction can easily be estimated.

Estimation of Consolidation in Soft Clay by Field Velocity Probe (Field Velocity Probe를 활용한 연약지반 압밀 평가)

  • Lee, Jong-Sub;Kim, Youngseok;Hong, Seungseo;Yoon, Hyung-Koo
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.511-517
    • /
    • 2013
  • The Field Velocity Probe (FVP) has been widely applied to determine the various characteristics of soils. This study seeks to estimate soil consolidation characteristics using an FVP and to increase its application in the field. The specimens were extracted from depths of 3 and 6 m at the study site, an area of soft clay in Incheon. In laboratory testing, the specimens were placed in an improved oedometer cell to measure shear wave velocity, and statistical analysis was performed to compare the results of effective stress and shear wave velocity. FVP enables increased resolution in the field because it measures the shear wave velocity every 20 cm. To estimate the condition of consolidation, we compared the results of shear wave velocities between those obtained in the laboratory and those in the field. The field conditions are used to analyze overconsolidated and normally consolidated soils at depths of 3 and 6 m, respectively. The results show that FVP is a suitable method for estimating the degree of consolidation.

An Experimental Study on Block Shear Fracture of Base Metal in Ferritic Stainless Steel Welded Connection (페라이트계 스테인리스강 용접접합부의 모재 블록전단파단에 관한 실험적 연구)

  • Kim, Tae Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.5
    • /
    • pp.303-312
    • /
    • 2016
  • Many researches on the application of stainless steels as structural steels have been performed thanks to their material properties such as superior ductility and corrosion resistance. Ferritic stainless steels(STS430) with little or no nickel have been used increasingly in building structure because it is inexpensive compared to austenitic stainless steels(STS304) with nickel, but provide performances similar to the austenitic stainless steel. This paper deals with block shear fracture behavior of base metal in stainless steel welded connection. Although the block shear fracture behavior for welded connection due to stress triaxiality is different from that of bolted connection, the block shear strength of welded connection in current design specifications has been predicted based on that of bolted connection. The main parameters are weld length and welding process(Arc and TIG welds). The ultimate strengths of TIG welded specimens were higher than those of arc welded specimens and current design predictions by AISC, EC3 etc. were compared with test strengths.

Dynamic Shear Strength of Stirrup-reinforced Cast-in Anchors by Seismic Qualification Tests (스터럽 보강 선설치 앵커의 지진모의실험에 의한 동적 전단 저항강도 평가)

  • Kim, Tae Hyung;Park, Yong Myung;Kang, Choong Hyun;Lee, Jong Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.67-76
    • /
    • 2018
  • An experimental study was conducted to evaluate the breakout strength of stirrup-reinforced cast-in anchors under dynamic shear loadings. The shear loadings were applied in the manner specified in the ACI 355.2 and ETAG 001 for the seismic qualification tests. Test specimens were fabricated with M36 anchor (edge distance, 180mm) reinforced with D10 stirrups (spacing, 100mm). The specimens reached almost the breakout strength and thereafter fracture of anchor occurred. Additional tests with M42 anchor (edge distance, 160mm) reinforced with D6 bars (spacing, 100mm) were also conducted. The experimental results showed that the dynamic shear strength was not less than the static resistance. Based on the test results, it was shown that ACI 318 and ETAG 001 specifications estimate the breakout strength of stirrup-reinforced anchors conservatively as more reinforcement is provided.

A Study on Characteristics of Waste Mixed Soil in Landfill (쓰레기 매립지 내 폐기물 혼합지반 특성 연구)

  • Park, Tae-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.55-61
    • /
    • 2016
  • This paper presents the geotechnical characteristics of the soil mixed with various waste(waste soil) in the landfill. The physical and mechanical tests were conducted to find out the waste soil. The tests include the gradation, consistency tests, shear and compression and the consolidation tests using both the Rowe cell and the constant ration stress. The analyses of the test results show the waste soil belongs to the well graded sand(SW) in the laboratory and sand-gravel(SG) to fine sand(SF) in the field monitoring based on the unified classification soil system. The shear strength is increasing with increasing the shear displacement, however, the peak of the shear strength does not appear through the test and there is no distinct peak value of the strength obtained. The compression index(Cc) results in as increasing the amount of the sludge included and the compression index is proportional to the sludge included, which means more settlement is expected. The hydraulic conductivity of the waste soil ranges between $1.6{\times}10^{-5}cm/sec$ and $1.8{\times}10^{-7}cm/sec$.