• Title/Summary/Keyword: shear analysis

Search Result 5,913, Processing Time 0.032 seconds

Inelastic seismic analysis of RC bridge piers including flexure-shear-axial interaction

  • Lee, Do Hyung;Elnashai, Amr S.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.241-260
    • /
    • 2002
  • The effect of shear coupled with axial force variation on the inelastic seismic behaviour of reinforced concrete bridge piers is investigated in this paper. For this purpose, a hysteretic axial-shear interaction model was developed and implemented in a nonlinear finite element analysis program. Thus, flexure-shear-axial interaction is simulated under variable amplitude reversed actions. Comparative studies for shear-dominated reinforced concrete columns indicated that a conventional FE model based on flexure-axial interaction only gave wholly inadequate results and was therefore incapable of predicting the behaviour of such members. Analysis of a reinforced concrete bridge damaged during the Northridge (California 1994) earthquake demonstrated the importance of shear modelling. The contribution of shear deformation to total displacement was considerable, leading to increased ductility demand. Moreover, the effect of shear with axial force variation can significantly affect strength, stiffness and energy dissipation capacity of reinforced concrete members. It is concluded that flexure-shear-axial interaction should be taken into account in assessing the behaviour of reinforced concrete bridge columns, especially in the presence of high vertical ground motion.

Analysis on Shear Force of Specimens Using Perfobond Rib Shear Connector (Perfobond Rib 전단연결재를 사용한 실험체의 전단강도 분석)

  • Choi, Jin Woong;Park, Byung Gun;Kim, Hyeong Jun;Jeong, Ho Seong;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.138-147
    • /
    • 2011
  • The objective of this study which it sees direct shear stress and comparative analysis of flexural shear stress leads and it is a shear stress analysis which it follows in load direction of the structure which uses Perfobond Rib shear connectors. To analyze direct shear stress, five Perfobond Rib shear connect experiments were fabricated with five variables and conducted Push-out Tests. After experiments, mechanism of Perfobond Rib shear connector was examined and direct shear formula was proposed based on primary factors which influence direct shear stress. Also, for the analysis of flexural shear steel-concrete composite slab specimens were fabricated and static flexural test. Based on the static flexural test it analyzed the flexural behavior and the flexural shear stress it calculated. Direct shear stress and EN 1994-1-1 to lead and be calculated, it compared the flexural shear stress and it analyzed in about the shear resistance stress which it follows in load direction.

Seismic analysis of shear wall buildings incorporating site specific ground response

  • Jayalekshmi, B.R.;Chinmayi, H.K.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.433-453
    • /
    • 2016
  • During earthquake, the motion of ground is affected significantly by source characteristics, source-to-site path properties and local site conditions. Due to the influence of local soil conditions different places experience distinctive amplitude of surface ground motion. Ground response analysis of a specific site utilizing the borehole information at different locations is done in present study. The ground motion with the highest peak ground acceleration for this site obtained from the ground response analysis is used in finite element soil-structure interaction analysis of multi-storey shear wall buildings with various positions of shear walls. The variation in seismic response of buildings and advantageous position of shear wall are determined. The study reveals that providing shear wall at the core of buildings at the specific site is advantageous among all shear wall configurations considered.

Pushover Analysis Considering Effects of Degradation of Shear Strength (전단강도 감소효과를 고려한 Pushover 해석)

  • Lee, Young-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.514-517
    • /
    • 2006
  • Nonseismic designed RC frame have a possibility of shear failure because of deficiencies of reinforcing details. To model the shear failure in numerical analysis, shear strength degradation models which include Moehle's and ATC 40 are compared and applied to push-over analysis. For numerical analysis, three storied building frame is selected and designed according to Korean Concrete Design Code(2003). From the numerical analysis, it is pointed out that there may be great difference in lateral drift capacity if a different shear strength model is used. And the capacity can be severely underestimated if the restraining model of plastic rotation of ATC 40 is used, compared to the use of shear spring for shear degradation.

  • PDF

Numerical simulation of Y-type perfobond rib shear connectors using finite element analysis

  • Kim, Kun-Soo;Han, Oneil;Gombosuren, Munkhtulga;Kim, Sang-Hyo
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.53-67
    • /
    • 2019
  • This study presents finite element analysis (FEA) on a Y-type perfobond rib shear connection using Abaqus software. The performance of a shear connection is evaluated by conducting a push-out test. However, in practice, it is inefficient to verify the performance by conducting a push-out test with regard to all design variables pertaining to a shear connector. To overcome this problem, FEA is conducted on various shear connectors to accurately estimate the shear strength of the Y-type perfobond rib shear connection. Previous push-out test results for 14 typical push-out test specimens and those obtained through FEA are compared to analyze the shear behavior including consideration of the design variables. The results show that the developed finite element model successfully reflects the effects of changes in the design variables. In addition, using the developed FEA model, the shear resistance of a stubby Y-type perfobond rib shear connector is evaluated based on the concrete strength and transverse rebar size variables. Then, the existing shear resistance formula is upgraded based on the FEA results.

Analyses of Fracture Tube Tearing using Gurson Model and Shear Failure Model (Gurson Model과 Shear Failure Model을 이용한 파쇄튜브의 찢어짐 해석)

  • Yang, Seung-Yong;Kwon, Tae-Su;Choi, Won-Mok
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.280-285
    • /
    • 2008
  • Two kinds of failure model, that is, the Gurson model and a shear failure model were used for the finite element analyses of simple and notch tensile specimens and axial compression of a fracture tube with initial saw-cuts. The parameter values for the shear failure model were determined by a combined experimental and numerical analysis of the notch tensile specimens. After fitting the numerical parameters such as the yielding stress and the fracture shear strains, the Gurson model and the shear failure model were applied to the analysis of the fracture tube. Although the Gurson model and the shear failure model showed similar fracture behavior for the case of the tensile specimens, the respective results were different in the axial force and the crack growth rate of the fracture tube. That is, the shear failure model required more axial force to make the cracks propagate along the tube than the Gurson model. These are believed to show the lack of damage evolution process of the shear failure model. To decide which model is better in the tube analysis, experimental verification will be necessary.

Experimental Study on Shear Behavior of HPFRCC Beam (HPFRCC Beam 부재의 전단거동에 관한 실험적 연구)

  • Song, Tae-Hwa;Lee, Seong-Cheol;Shin, Kyung-Joon;Chang, Sung-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.289-292
    • /
    • 2006
  • In this research, bending shear test of HPFRCC beams is conducted to obtain the shear strength of HPFRCC beams. Parameters are ratio of volume percentage of fibers. Also, the uniaxial tensile test of HPFRCC is conducted to obtain the tensile cracking stress of each parameters. From the uniaxial tensile test result, the shear strength of HPFRCC beams can be calculated by using the preexisting shear analysis model. Then, the shear strengths of bending shear test result and analysis result are compared.

  • PDF

Elasto-plastic Joint Finite Element Analysis of Root-pile Using the Direct Shear Test Model (직접전단시험모델에 의한 뿌리말뚝의 탄소성조인트 유한요소해석)

  • Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.4
    • /
    • pp.19-30
    • /
    • 2002
  • The stability of slope using root-pile like to the reinforcements is affected by the interaction behavior mechanism of soil-reinforcements. Through the studying on the interaction in joint of its, therefore, the control roles can be find out in installed slope. In study, the stress level ratio based on the insert angle of installed reinforcements in soil used to numerical analysis, which was results from the duty direct shear test in Lab. The maximum shear strain variation on the reinforcements was observed at insert angle, which was approximately similar to the calculated angle based on the equation proposed by the Jewell. The elasto-plastic joint model on the contact area of soil-reinforcements was presumed, the reinforced soil assumed non-linear elastic model and the reinforcements supposed elastic model, respectively. The finite element analysis of assumed models was performed. The shear strain variation of non-reinforced state obtained by the FEM analysis including elasto-plastic joint elements were shown the rationality of general limit equilibrium analysis for the slope failure mode on driving zone and resistance zone, which based on the stress level step according to failure ratio. Through the variation of shear strain for the variation of inserting angle of reinforcements, the different mechanism on the bending and the shear resistance of reinforcements was shown fair possibility.

Prediction of Shear Strength in High-Strength Concrete Beams Considering Size Effect (크기효과를 고려한 고강도 콘크리트 보의 전단강도 예측식 제안)

  • 배영훈;윤영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.878-883
    • /
    • 2003
  • To modify some problems of ACI shear provisions, ultimate shear strength equation considering size effect and arch action to compute shear strength in high-strength concrete beams without stirrups is presented in this research. Three basic equations, namely size reduction factor, rho factor, and arch action factor, are derived from crack band model of fracture mechanics, analysis of previous some shear equations for longitudinal reinforcement ratio, and concrete strut described as linear function in deep beams. Constants of basic equations are determined using statistical analysis of previous shear testing data. To verify proposed shear equation for each variable, namely d, , ρ, f/sub c/' and aid, about 250 experimental data are used and proposed shear equation is compared with ACI 318-99 code, CEB-FIP Model code, Kim & Park's equation and Zsutty's equation. While proposed shear equation is simpler than other shear equations, it is shown to be economical predictions and reasonable safety margin. Hence proposed shear strength equation is expected to be applied to practice shear design.

  • PDF

Collapse Mechanism of Ordinary RC Shear Wall-Frame Buildings Considering Shear Failure Mode (전단파괴모드를 고려한 철근콘크리트 보통전단벽-골조 건물의 붕괴메커니즘)

  • Chu, Yurim;Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Most commercial buildings among existing RC buildings in Korea have a multi-story wall-frame structure where RC shear wall is commonly used as its core at stairways or elevators. The members of the existing middle and low-rise wall-frame buildings are likely arranged in ordinary details considering building occupancy, and the importance and difficulty of member design. This is because there are few limitations, considerations, and financial burdens on the code for designing members with ordinary details. Compared with the intermediate or unique details, the ductility and overstrength are insufficient. Furthermore, the behavior of the member can be shear-dominated. Since shear failure in vertical members can cause a collapse of the entire structure, nonlinear characteristics such as shear strength and stiffness deterioration should be adequately reflected in the analysis model. With this background, an 8-story RC wall-frame building was designed as a building frame system with ordinary shear walls, and the effect of reflecting the shear failure mode of columns and walls on the collapse mechanism was investigated. As a result, the shear failure mode effect on the collapse mechanism was evident in walls, not columns. Consequently, it is recommended that the shear behavior characteristics of walls are explicitly considered in the analysis of wall-frame buildings with ordinary details.