• Title/Summary/Keyword: shared control system

Search Result 250, Processing Time 0.026 seconds

Development of Die Bonder Machine for Semiconductor Automatic Assembly (반도체 소자용 자동 Die Bonder 기계장치의 개발)

  • Bien, Z.;Youn, M.J.;Oh, S.R.;Oh, Y.S.;Suh, I.H.;Ahn, T.Y.;Kwon, K.B.;Kim, J.O.;Kim, J.D.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.284-287
    • /
    • 1987
  • In this paper, the design and implementation of a multiprocessor based Die Bonder Machine for the semiconductor will be described. This the partial research result, that is, the 1st year portion of the project to be performed for a period of two years from June, 1986 to May, 1988. The mechanical system consists of the following three subsystems : (i) transfer head unit, (ii) die feeding XY-table unit, and (iii) plunge up unit. The overall control system is designed to be essentially a master-slave type in which each slave is functionally fixed in view of software and also the time shared common bus structure with hardwired bus arbitration scheme is utilized, the control system consists of the following three subsystems each of which employs a 16 bits microprocessor MC 68000 : (i) die bonder processor controller, (ii) visual recognition/inspection and display system, (iii) the servo control system. It is reported that the proposed control system were applied to Working Sample and tested in real system, and the results are successful as a working sample phase.

  • PDF

An autonomous control framework for advanced reactors

  • Wood, Richard T.;Upadhyaya, Belle R.;Floyd, Dan C.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.896-904
    • /
    • 2017
  • Several Generation IV nuclear reactor concepts have goals for optimizing investment recovery through phased introduction of multiple units on a common site with shared facilities and/or reconfigurable energy conversion systems. Additionally, small modular reactors are suitable for remote deployment to support highly localized microgrids in isolated, underdeveloped regions. The long-term economic viability of these advanced reactor plants depends on significant reductions in plant operations and maintenance costs. To accomplish these goals, intelligent control and diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. A nearly autonomous control system should enable automatic operation of a nuclear power plant while adapting to equipment faults and other upsets. It needs to have many intelligent capabilities, such as diagnosis, simulation, analysis, planning, reconfigurability, self-validation, and decision. These capabilities have been the subject of research for many years, but an autonomous control system for nuclear power generation remains as-yet an unrealized goal. This article describes a functional framework for intelligent, autonomous control that can facilitate the integration of control, diagnostic, and decision-making capabilities to satisfy the operational and performance goals of power plants based on multimodular advanced reactors.

A Synchronization Error Control System for Web based Multimedia Collaboration Environment (웹 기반 멀티미디어 공동 작업 환경에서의 동기화 오류 제어 시스템)

  • Ko, Eung-Nam
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.45-52
    • /
    • 2004
  • We propose ESS_WMCE. This paper explains the design and implementation of the EDSS running on ESS_WMCE. EDSS is a synchronization error control system for web based multimedia collaboration environment. We have an error detection approach by using hooking method. The technique of an error transmission is a mended model of utilizing an application sharing system. DOORAE is a good framework model for supporting development on application for computer supported cooperated works. It has primitive service functions. Service functions are implemented with an object oriented concept. It is a system that is suitable for detecting and sharing a software error rapidly occurring on web based multimedia collaboration environment by using software techniques. It is able to share an error as well as providing URL synchronization to access shared objects. When an error occurs, this system detects an error by using hooking methods in MS-Windows API(Application Program Interface) function. If an error is found, it is able to provide an error sharing to access shared objects.

SIMULATOR-BASED HUMAN FACTORS EVALUATION OF AUTOMATED HIGHWAY SYSTEM

  • Cha, D.W.;Park, P.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.625-635
    • /
    • 2006
  • From a viewpoint of human factors, automated highway systems(AHS) can be defined as one of the newly developing human-machine systems that consist of humans(drivers and operators), machines(vehicles and facilities), and environments(roads and roadside environments). AHS will require a changed vehicle control process and driver-vehicle interface(DVI) comparing with conventional driving. This study introduces a fixed-based AHS simulator and provides questionnaire-based human factors evaluation results after three kinds of automated driving speed experiences in terms of road configuration, operation policies, information devices, and overall AHS use. In the simulator, the "shared space-at-grade" concept-based road configuration was virtually implemented on a portion of the Kyungbu highway in Korea, and heads-up display(HUD), AHS information display, and variable message signs(VMS) were installed for appropriate AHS DVI implementation. As the results, the subjects expressed positive opinions on the implemented road configuration, operation policies, and the overall use of AHS. The results of this study would be helpful in developing the road configuration and DVI design guideline as the basic human factors research for the future implementation of AHS.

Collaborative Authoring System using 3D Spatio-Temporal Space (삼차원 시.공간을 이용하는 프레젠테이션 공동저작 시스템)

  • 이도형;성미영
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.6
    • /
    • pp.623-634
    • /
    • 2003
  • In this paper, we propose a collaborative multimedia authoring system. Our authoring system represents a multimedia presentation in a 3D coordinate system. One axis represents the traditional timeline information (T-zone), and the other two axes represent spatial coordinates (XY-zone). Our system represents a visual media objects as a 3D parallelepipeds and audio media objects as cylinders. This interface allows for simultaneous authoring and manipulation of both the temporal and the spatial aspects of a presentation. Using our system, users can design multimedia presentations collaboratively in the unified spatio-temporal space while freely traversing the spatial domain and the temporal domain without changing the context of authoring. In addition, we suggest an efficient mechanism of concurrency control for shared objects generated by our collaborative writing system. The mechanism is mainly based on the user awareness, the multiple versions, and the access permission of shared objects. Our concurrency control mechanism is designed to keep data consistency by minimizing the collision due to the delay or the failure of network communication and to allow maximum responsiveness for users using optimistic concurrency control. Also, the mechanism maximize the responsiveness by refining the locking granularity and applying different concurrency control mechanisms to each.

Fuzzy-based Processor Allocation Strategy for Multiprogrammed Shared-Memory Multiprocessors (다중프로그래밍 공유메모리 다중프로세서 시스템을 위한 퍼지 기반 프로세서 할당 기법)

  • 김진일;이상구
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.409-416
    • /
    • 2000
  • In the shared-memory mutiprocessor systems, shared processing techniques such as time-sharing, space¬sharing, and gang-scheduling are used to improve the overall system utilization for the parallel operations. Recently, LLPC(Loop-Level Process Control) allocation technique was proposed. It dynamically adjusts the needed number of processors for the execution of the parallel code portions based on the current system load in the given job. This method allocates as many available processors as possible, and does not save any processors for the parallel sections of other later-arriving applications. To solve this problem, in this paper, we propose a new processor allocation technique called FPA(Fuzzy Processor Allocation) that dynamically adjusts the number of processors by fuzzifYing the amounts ofueeded number of processors, loads, and estimated execution times of job. The proposed method provides the maximum possibility of the parallism of each job without system overload. We compare the performances of our approaches with the conventional results. The experiments show that the proposed method provides a better performance.

  • PDF

A study of bilateral control with time delay

  • Shibasato, Kouki;Furuta, Katsuhisa;Yamakita, Masaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1681-1686
    • /
    • 1991
  • In robotics and other fields of engineering, techniques for artificial reality or virtual reality are focused on and studied extensively, e.g., virtual existence for tele-operator systems in robotics, and virtual reality of designed objects in architecture. In order to realize the system we should create physical stimulations according to internal models created by experiences in a human brain. The internal model does not have to have direct connections to the real world, however, the stimulation must be signals such that the internal model are retrieved in a human brain. In this paper we propose a technique for tele-virtual reality of dynamic mechanical models, which means that one dynamic mechanical model can be shared by peoples in distant places. Since a stability issue due to time delays arises in the system, we employed a scattering technique developed for a tele-operator system and a kind of passive adaptive controllers. Furthermore, restrictions due to a simple digital implementation of the scattering transformation are discussed and some conditions for stability are shown. The proposed method is applied to a remote tug of war system and the effectiveness is verified.

  • PDF

A new macroblock-based bit allocation algorithm in multiple MPEG-1 video encoders system (복수개의 MPEG-1 영상 부호화기를 위한 매크로블럭 단위의 비트 할당 기법)

  • 김진수;김재균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.1
    • /
    • pp.53-63
    • /
    • 1997
  • In this paper, we present a new macroblock-based bit allocation scheme in multiple MPEG-1 video encoders system and a single multiplexer over a single channel. The proposed scheme models the relations between fate(Bits/MB) and distortion(MSE/MB), rate and quantizer parameter(QP), distortion and quantizer parameter, respectively, in the same form. By using these relations, we minimize the Larangian cost function to obtain a bit allocation scheme based on macroblock unit. Experimental results show that the proposed scheme can reduce MSE compared to other conventional buffer-based rate control methods, i.e. independent buffer control method and shared common buffer control one. And we confirmed, through computer simulation, that the proposed scheme can be effectively modified to maintain the objective quality of a specific video service at a constant level.

  • PDF

A Human Robot Interactive System "RoJi"

  • Shim, Inbo;Yoon, Joongsun;Yoh, Myeungsook
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.398-405
    • /
    • 2004
  • A human-friendly interactive system that is based on the harmonious symbiotic coexistence of humans and robots is explored. Based on the interactive technology paradigm, a robotic cane is proposed for blind or visually impaired pedestrians to navigate safely and quickly through obstacles and other hazards. Robotic aids, such as robotic canes, require cooperation between humans and robots. Various methods for implementing the appropriate cooperative recognition, planning, and acting, have been investigated. The issues discussed include the interaction between humans and robots, design issues of an interactive robotic cane, and behavior arbitration methodologies for navigation planning.

A Fault-Tolerant Scheme Based on Message Passing for Mission-Critical Computers (임무지향 컴퓨터를 위한 메시지패싱 고장감내 기법)

  • Kim, Taehyon;Bae, Jungil;Shin, Jinbeom;Cho, Kilseok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.762-770
    • /
    • 2015
  • Fault tolerance is a crucial design for a mission-critical computer such as engagement control computer that has to maintain its operation for long mission time. In recent years, software fault-tolerant design is becoming important in terms of cost-effectiveness and high-efficiency. In this paper, we propose MPCMCC which is a model-based software component to implement fault tolerance in mission-critical computers. MPCMCC is a fault tolerance design that synchronizes shared data between two computers by using the one-way message-passing scheme which is easy to use and more stable than the shared memory scheme. In addition, MPCMCC can be easily reused for future work by employing the model based development methodology. We verified the functions of the software component and analyzed its performance in the simulation environment by using two mission-critical computers. The results show that MPCMCC is a suitable software component for fault tolerance in mission-critical computers.