• Title/Summary/Keyword: shape reconstruction

Search Result 464, Processing Time 0.025 seconds

The Transmanubrial Approach for Cervicothoracic Junction Lesions : Feasibility, Limitations, and Advantages

  • Park, Jong-Hyun;Im, Soo Bin;Jeong, Je Hoon;Hwang, Sun Chul;Shin, Dong-Seung;Kim, Bum-Tae
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.3
    • /
    • pp.236-241
    • /
    • 2015
  • Objective : We report on the technical feasibility and limitations of the transmanubrial approach for cervicothoracic junction (CTJ) lesions and emphasize the advantage of bisecting the upper part of the manubrium in an inverted Y-shape. Methods : Thirteen patients who underwent the fourteen transmanubrial approach for various CTJ lesions were enrolled during 2005-2014. For the evaluation of the accessibility for the CTJ lesion, we analyzed the two parallel line defined as a straight line parallel to the inferior and superior plateau of the upper and lower healthy vertebrae, the angle of the two parallel lines and the distance from the sternal notch to lines at the sternum on preoperative magnetic resonance images. Surgical limitations and perspectives, as well as postoperative clinical outcomes were evaluated retrospectively. Results : The CTJ lesions were six metastases, three primary bone tumors, two herniated discs, and one each of a traumatic dislocation with syrinx formation and tuberculous spondylitis and ossification of the posterior longitudinal ligament. If two parallel lines pass below the sternal notch, the manubriotomy should be inevitably performed. The mean preoperative Visual analogue scale score was 8 (range, 5-10), which improved to 4 (range, 0-6) postoperatively. Seven cases showed an increase in Frankel score postoperatively. Conclusion : The spatial relationship between the sternal notch and the two parallel lines to the lesion was rational to determine the feasibility of manubriotomy. The transmanubrial approach for CTJ lesions can achieve favorable clinical outcomes by providing direct decompression of lesion and effective reconstruction.

Correction of Missing Feature Points for 3D Modeling from 2D object images (2차원 객체 영상의 3차원 모델링을 위한 손실 특징점 보정)

  • Koh, Sung-shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2844-2851
    • /
    • 2015
  • How to recover from the multiple 2D images into 3D object has been widely studied in the field of computer vision. In order to improve the accuracy of the recovered 3D shape, it is more important that noise must be minimized and the number of image frames must be guaranteed. However, potential noise is implied when tracking feature points. And the number of image frames which is consisted of an observation matrix usually decrease because of tracking failure, occlusions, or low image resolution, and so on. Therefore, it is obviously essential that the number of image frames must be secured by recovering the missing feature points under noise. Thus, we propose the analytic approach which can control directly the error distance and orientation of missing feature point by the geometrical properties under noise distribution. The superiority of proposed method is demonstrated through experimental results for synthetic and real object.

Development and Practical Use of Rubblization Method (원위치파쇄기층화 공법의 개발 및 실용화 연구)

  • Ko, Seok-Beom;Kim, Kyung-Taek;Lee, Young-Chul;Lee, Seung-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.405-416
    • /
    • 2005
  • The rubblization technique is breaking the aged concrete pavement slab into rubblized concrete aggregate, and use it as an base material at its original position, then builds overlay above the rubblized base. This method has been successively used in USA due to the advantage of good contructibility, cost-effectiveness as well as the capability of preventing of reflection cracks. However, constructibility and economic performance of rubblization on typical Korean concrete pavements needed to be investigate since to typical Korean concrete pavements have thick slab, as well include lean concrete subbase course. This stud explored optimum breaking depth and suggested minimum 10cm based on reflection crack simulation test. Also proper head shape and impact energy were investigated based on small breaking field tests. It was found that $127kg/cm^2$ of stress with 52.3% of head contact area are breaking requirement. Also, Multi-head type breaker suitable for Korean condition was designed and developed. This multi-head type breaker was designed to rubblize old concrete to the suggested optimum rubblized-depth and rubblized-concrete-aggregate size to prevent reflection crack and maintain high bearing capacity. This machine was used for the test of rubblization of old concrete pavement on a non-use old concrete and a in-serviced road. In these two tests, engineering properties of rubblized base and constructability and cost were investigated. In both tests, the old concrete rubblized to targeted size and depth, and high-level bearing capacity was achieved. Also, superior constructability and lower cost compared with traditional reconstruction was examined.

  • PDF

Multiresolution Model for Vector Fields Defined over Curvilinear Grids (곡선 그리드상에 정의된 벡터 필드를 위한 다해상도 모형)

  • 정일홍;장우현;조세홍;이봉환
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.5
    • /
    • pp.542-549
    • /
    • 2000
  • This Paper presents the development of multiresolution model for the analysis and visualization of two-dimensional flows over curvilinear grids. Multiresolution analysis provides a useful and efficient tool to represent shape and to analyze features at multiple level of detail. Applying multiresolution analysis to vector field visualization is very useful and powerful as the vector field's data sets are usually huge and complex. Using approximation at lower resolution, brief outline of topology can be extracted in short periods of time. Local reconstruction allows the user to zoom in or out, only by reconstructing the portion of interest. This new model is based upon nested spaces of piecewise defined function over nested curvilinear grid domains. The nested domains are selected so as to maintain the original geometry of the inner boundary. This paper presents the refinement and decomposition equations for Haar wavelet over these domains and shows some examples.

  • PDF

TAH(Total Artificial Heart) Fitting Trial Supported by 4D Volume Visualization Technique (4차원 체적 가시화 기법을 이용한 인공심장의 Fitting Trial)

  • Lee, Dong-Hyuk;Kim, Jong-Hyo;Min, Byong-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.161-162
    • /
    • 1997
  • It is very useful to perform the surgery simulation before implanting TAH(Total Artificial Heart} in a patient. The space of chest and the shape of vessels are different from patient to patient. So, It is desirable to customize a TAH design to the anatomy structure of a patient. Several studies are performed to visualize and explain the 3D structure of heart. These studies are performed using 2-dimensional ref or mated images and simple measurement. Anatomy structure of a human heart is not so simple. It is 4dimensional structure ; 3-dimensional plus time, heart beating. 3-dimensional reconstruction schemes of medical images developed for about 10 years are usually categorized into two types of rendering technique ; surface rendering and volume rendering. Volume rendering is preferable in medical image processing field because this technique can be applied without considering the complexity of geometry and change of field of interest. The usable space in the chest of patient can be measured by 3D volume matching of patient trunk and TAH model. This space changes with time. In this research we have developed the 4-dimensional volume match program of patient and TAH model. 3-dimensional rendered set of volumes along time were used to simulate TAH fitting trial. The quantitative measurement from this simulation could be applied to customize TAH design.

  • PDF

Sex-related and racial variations in orbital floor anatomy

  • Moon, Seung Jin;Lee, Won Jai;Roh, Tai Suk;Baek, Wooyeol
    • Archives of Craniofacial Surgery
    • /
    • v.21 no.4
    • /
    • pp.219-224
    • /
    • 2020
  • Background: Repair of the orbital floor following trauma or tumor removal remains a challenge because of its complex three-dimensional shape. The purpose of the present study is to understand normal orbital floor anatomy by investigating its differences across four groups (Caucasian American and East Asian, males and females) via facial bone computed tomography (CT). Methods: A total of 48 orbits in 24 patients between 20 and 60 years of age were evaluated. Although most patients underwent CT scanning following trauma, the orbital walls were intact in all patients. Linear and angular measurements of the orbital floor were obtained from CT images. Results: Orbital floor width, length, angle between the orbital floor and medial wall, and distance from the inferior orbital rim to the lowest point of the orbital floor did not show a statistically significant difference between groups. Angles made by the infraorbital rim, the lowest point of the floor, and the anterior border of the infraorbital fissure were statistically significantly wider in East Asian females than in male groups. The floor depth in East Asian females was significantly smaller compared to all the other groups. Conclusion: East Asian female population had smaller curvature and depth of an orbital floor than the other groups, which means racial and sex-related differences should be considered in the orbital floor reconstruction.

Object Tracking in HEVC Bitstreams (HEVC 스트림 상에서의 객체 추적 방법)

  • Park, Dongmin;Lee, Dongkyu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.449-463
    • /
    • 2015
  • Video object tracking is important for variety of applications, such as security, video indexing and retrieval, video surveillance, communication, and compression. This paper proposes an object tracking method in HEVC bitstreams. Without pixel reconstruction, motion vector (MV) and size of prediction unit in the bitstream are employed in an Spatio-Temporal Markov Random Fields (ST-MRF) model which represents the spatial and temporal aspects of the object's motion. Coefficient-based object shape adjustment is proposed to solve the over-segmentation and the error propagation problems caused in other methods. In the experimental results, the proposed method provides on average precision of 86.4%, recall of 79.8% and F-measure of 81.1%. The proposed method achieves an F-measure improvement of up to 9% for over-segmented results in the other method even though it provides only average F-measure improvement of 0.2% with respect to the other method. The total processing time is 5.4ms per frame, allowing the algorithm to be applied in real-time applications.

Usefulness of a Lateral Thoracodorsal Flap after Breast Conserving Surgery in Laterally Located Breast Cancer

  • Yang, Jung Dug;Ryu, Dong Wan;Lee, Jeong Woo;Choi, Kang Young;Chung, Ho Yun;Cho, Byung Chae;Park, Ho Yong;Byun, Jin Suk
    • Archives of Plastic Surgery
    • /
    • v.40 no.4
    • /
    • pp.367-373
    • /
    • 2013
  • Background Breast-conserving surgery is widely accepted as an appropriate method in breast cancer, and the lateral thoracodorsal flap provides a simple, reliable technique, especially when a mass is located in the lateral breast. This study describes the usefulness of a lateral thoracodorsal flap after breast conserving surgery in laterally located breast cancer. Methods From September 2008 to February 2013, a lateral thoracodorsal flap was used in 20 patients with laterally located breast cancer treated at our institution. The technique involves a local medially based, wedge shaped, fasciocutaneous transposition flap from the lateral region of the thoracic area. Overall satisfaction and aesthetic satisfaction surveys were conducted with the patients during a 6-month postoperative follow-up period. Aesthetic results in terms of breast shape and symmetry were evaluated by plastic surgeons. Results The average specimen weight was 76.8 g. The locations of the masses were the upper lateral quadrant (n=15), the lower lateral quadrant (n=2), and the central lateral area (n=3). Complications developed in four of the cases, partial flap necrosis in one, wound dehiscence in one, and fat necrosis in two. The majority of the patients were satisfied with their cosmetic outcomes. Conclusions Partial breast reconstruction using a lateral thoracodorsal flap is well matched with breast color and texture, and the surgery is less aggressive than other techniques with few complications. Therefore, the lateral thoracodorsal flap can be a useful, reliable technique in correcting breast deformity after breast conserving surgery, especially in laterally located breast cancer.

Mobile Panorama System via 3D Model Reconstruction (3차원 모델 재구성을 통한 모바일 파노라마 시스템)

  • Kim, Jin-Hee;Choy, Yoon-Chul;Han, Tack-Don;Lim, Soon-Bum
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.8
    • /
    • pp.1094-1107
    • /
    • 2011
  • We can use panorama systems or image based modeling systems when we want to make 3D space model and look around result. Panorama systems make 3D model to stitch images and map cylinder or cube. The structure of 3D model, made by panorama system, is not same as structure of a real room, so user can't infer a real structure. Typically, Image based modeling systems work on a desktop computer. That makes it difficult to reconstruct 3D model in real time and take long time for processing. In this paper, we propose a 3D panorama modeling system that uses images on a mobile device. This system reconstructs a 3D space model, similar with a real room in real time, from multiple images captured part of rooms. Using this system, user can reconstruct various shape of space and look around a 3D space model.

Moving Object Extraction and Relative Depth Estimation of Backgrould regions in Video Sequences (동영상에서 물체의 추출과 배경영역의 상대적인 깊이 추정)

  • Park Young-Min;Chang Chu-Seok
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.247-256
    • /
    • 2005
  • One of the classic research problems in computer vision is that of stereo, i.e., the reconstruction of three dimensional shape from two or more images. This paper deals with the problem of extracting depth information of non-rigid dynamic 3D scenes from general 2D video sequences taken by monocular camera, such as movies, documentaries, and dramas. Depth of the blocks are extracted from the resultant block motions throughout following two steps: (i) calculation of global parameters concerned with camera translations and focal length using the locations of blocks and their motions, (ii) calculation of each block depth relative to average image depth using the global parameters and the location of the block and its motion, Both singular and non-singular cases are experimented with various video sequences. The resultant relative depths and ego-motion object shapes are virtually identical to human vision.