• Title/Summary/Keyword: shape reconstruction

Search Result 464, Processing Time 0.026 seconds

Object-Based Integral Imaging Depth Extraction Using Segmentation (영상 분할을 이용한 객체 기반 집적영상 깊이 추출)

  • Kang, Jin-Mo;Jung, Jae-Hyun;Lee, Byoung-Ho;Park, Jae-Hyeung
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.2
    • /
    • pp.94-101
    • /
    • 2009
  • A novel method for the reconstruction of 3D shape and texture from elemental images has been proposed. Using this method, we can estimate a full 3D polygonal model of objects with seamless triangulation. But in the triangulation process, all the objects are stitched. This generates phantom surfaces that bridge depth discontinuities between different objects. To solve this problem we need to connect points only within a single object. We adopt a segmentation process to this end. The entire process of the proposed method is as follows. First, the central pixel of each elemental image is computed to extract spatial position of objects by correspondence analysis. Second, the object points of central pixels from neighboring elemental images are projected onto a specific elemental image. Then, the center sub-image is segmented and each object is labeled. We used the normalized cut algorithm for segmentation of the center sub-image. To enhance the speed of segmentation we applied the watershed algorithm before the normalized cut. Using the segmentation results, the subdivision process is applied to pixels only within the same objects. The refined grid is filtered with median and Gaussian filters to improve reconstruction quality. Finally, each vertex is connected and an object-based triangular mesh is formed. We conducted experiments using real objects and verified our proposed method.

Development of Processing Program for Audio-vision System Based on Auditory Input (청각을 이용한 시각 재현장치의 분석프로그램 개발)

  • Heo, Se-Jin;Bang, Sung-Sik;Seo, Jee-Hye;Choi, Hyun-Woo;Kim, Tae-Ho;Lee, Na-Hee;Lee, Yu-Jin;Park, Ji-Won;Lee, Hui-Joong;Won, Chul-Ho;Lee, Jong-Min
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.58-65
    • /
    • 2010
  • The final goal of our research is developing not a simple collision a1ann equipment for the blinded walkers, but the apparatus (Audio- Vision System) which can simulate vision based on auditory information so that the blinds can figure the three dimensional space in front of them. On the way to the final goal, in this study, simulation software was developed and verified. Thirty normal volunteers were included in the subject group and the average age Was 25.8 years old. After being accustomed to the system by evaluating 10 blinded virtual spaces, the volunteers performed test using another set of 10 blinded virtual spaces. The results of test were scored by shape, center, margin, and gradient surface of objects in virtual space. The score of each checking point ranged from 1 to 5, and the full score was converted to 100. As results of this study, the total score ranged from 77 to 97 with the average of 88.7. In this study, a simulation software was developed and verified to have acceptable success rale. By combining to visual sensors, the vision-reconstruction system based on auditory signal (Audio-vision System) may be developed.

LONG TERM EVALUATION OF VOLUME CHANGE IN FREE VASCULARIZED FIBULAR FLAP MANDIBLE RECONSTRUCTION (하악골 결손의 재건을 위한 혈행화된 비골 이식술에서의 장기간의 체적변화)

  • Kim, Yoon-Tae;Jeon, Seung-Ho;Yeom, Hak-Ryol;Ahn, Kang-Min;Myoung, Hoon;Hwang, Soon-Jung;Seo, Byoung-Moo;Choi, Jin-Young;Choung, Pill-Hoon;Kim, Myung-Jin;Lee, Jong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.2
    • /
    • pp.138-141
    • /
    • 2006
  • Introduction : In recent years, vascularized, i.e., living bone grafts, have been widely applied in the field of oral and maxillofacial surgery, as a method of treatment of congenital or acquired non-unions, and a large defects in mandible. The vascularized fibular graft has been especially used for this purpose because of its shape and mechanical strength. The postoperative hypertrophy of grafted fibula is of particular interest to us. Material and methods : This study was undertaken to determine the volume change(indirect methods) and radiographic appearance of a free vascularized fibular graft as it responds to the mechanical and physiologic features of its new environment. In order to elucidate the long term effect on fibular mass after mandibular reconstruction, change in various method of volume change was utilized as indirect measure of change in long-term. Results : The younger the patient, the more prominent and rapid the hypertrophy of the graft. the hypertrophy of the graft never exceeded the diameter of the recipient bone, except for callus enlargement after stress fracture of the grafted bone. Conclusion : Etiologic explanations for this phenomenon have not been clarified in the previeous literature. some of the factors implicated include a periosteal reaction or new bone formation, as seen at the onset of bone union after a fracture in a child, a reaction to the mechanical loading on the graft and a reaction to the circulatory changes resulting from the grafting procedure.

A Management and Chronological History of Mangwijung Garden Located at Seo-gu in Gwangju (광주시 서구 만귀정(晩歸亭) 원림의 경영과 역사경관 변천사)

  • Choi, Jin-Seo;Kim, Choong-Sik
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.1
    • /
    • pp.85-91
    • /
    • 2020
  • The descendants of Jang, Chang-woo(張昌雨) reconstructed the Mangwijung (晩歸亭), which is currently located at Seha-dong, Seo-gu, Gangju Metropolitan City, in the context of succeeding the work of their ancestor. This study investigated the management viewpoint of Mangwijung that has been altered in going through the reconstruction and repairs processes, and examined the chronological history for a landscape of the Mangwijung Garden. First, in the Mangwijung Garden, three gazebos such as Mangwijung, Seubhyanggag(襲香閣) and Mukamjeongsa(墨庵精舍) stand in a row with three bridges between each of them in the middle of a wide pond. This is a group of gazebos that is a quite unique structure. Second, Hyowoodang(孝友堂) Jang, Chang-woo (張昌雨) built Mangwijung as a role of thatched cottage in order to teach younger students and enjoy the arts in his later life. The Mangwijung was reconstructed by the descendants of Jang, Chang-woo at the collapsed place later on in order to commemorate the achievements of their ancestor. By the way, it was revealed that the management of Mangwijung has been altered during the process of reconstruction. Third, when comparing the current appearance with those depicted in the 8 scenic views(八景) by Jang, Chang-woo and the literary works of his descendants, it was confirmed that the landscape and shape of the pond were damaged due to a road expansion caused by a construction of Seubhyanggag and Mukamjeongsa as well as an advancement of the city. Fourth, it is speculated that the pond of Mangwijung Garden is probably a spring not a reservoir to store the water stream that flows in.

STL Generation in Reverse Engineering by Delaunay Triangulation (역공학에서의 Delaunay 삼각형 분할에 의한 STL 파일 생성)

  • Lee, Seok-Hui;Kim, Ho-Chan;Heo, Seong-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.803-812
    • /
    • 2002
  • Reverse engineering has been widely used for the shape reconstruction of an object without CAD data and the measurement of clay or wood models for the development of new products. To generate a surface from measured points by a laser scanner, typical steps include the scanning of a clay or wood model and the generation of manufacturing data like STL file. A laser scanner has a great potential to get geometrical data of a model for its fast measuring speed and higher precision. The data from a laser scanner are composed of many line stripes of points. A new approach to remove point data with Delaunay triangulation is introduced to deal with problems during reverse engineering process. The selection of group of triangles to be triangulated based on the angle between triangles is used for robust and reliable implementation of Delaunay triangulation as preliminary steps. Developed software enables the user to specify the criteria for the selection of group of triangles either by the angle between triangles or the percentage of triangles reduced. The time and error for handling point data during modelling process can be reduced and thus RP models with accuracy will be helpful to automated process.

High Resolution Computerized Tomography System Using the Microfocus X-Ray for Inspection of Small Specimens (소형 물체의 검사를 위한 고해상도 미세 초점 X선 단층 촬영 시스템)

  • Kim, Young-Joo;Koo, Ja-Yong;Lee, Seung-S.;Kim, Whan-W.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.3
    • /
    • pp.181-190
    • /
    • 1998
  • A computerized tomography system was developed using the X-ray source that has diameter of 5 micrometer. The system is used for the nondestructive testing of specimens with diameter below 20 mm. The convolution back projection algorithm was adopted for the reconstruction of cross sectional image, and the shape of the X-ray beam was let parallel beam or fan beam to compare each resultant image. Our CT system was constructed to operate based on the personal computer. The sectional images of the fabricated specimens were reconstructed and analyzed. The reconstructed images well coincided with real images taken with optical microscope and gave us enough reports on the defects in the ceramic specimen. The resolution of the system regarded as about $20{\sim}30$ micrometers.

  • PDF

Adaptive Optimal Thresholding for the Segmentation of Individual Tooth from CT Images (CT영상에서 개별 치아 분리를 위한 적응 최적 임계화 방안)

  • Heo, Hoon;Chae, Ok-Sam
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.163-174
    • /
    • 2004
  • The 3D tooth model in which each tooth can be manipulated individualy is essential component for the orthodontic simulation and implant simulation in dental field. For the reconstruction of such a tooth model, we need an image segmentation algorithm capable of separating individual tooth from neighboring teeth and alveolar bone. In this paper we propose a CT image normalization method and adaptive optimal thresholding algorithm for the segmenation of tooth region in CT image slices. The proposed segmentation algorithm is based on the fact that the shape and intensity of tooth change gradually among CT image slices. It generates temporary boundary of a tooth by using the threshold value estimated in the previous imge slice, and compute histograms for the inner region and the outer region seperated by the temporary boundary. The optimal threshold value generating the finnal tooth region is computed based on these two histogram.

자발적 상분리법과 수열합성법을 이용한 ZnO계 일차원 나노구조의 수직 합성법 연구

  • Jo, Hyeong-Gyun;Kim, Dong-Chan;Bae, Yeong-Suk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.5.2-5.2
    • /
    • 2009
  • From 10 years ago, the development of nano-devices endeavored to achieve reconstruction of information technology (IT) and nano technology (NT) industry. Among the many materials for the IT and NT industry, zinc oxide (ZnO) is a very promising candidate material for the research of nano-device development. Nano-structures of ZnO-based materials were grown easily via various methods and it attracts huge attention because of their superior electrical and optical properties for optoelectronic devices. Recently, among the various growth methods, MOCVD has attracted considerable attention because it is suitable process with benefits such as large area growth, vertical alignment, and accurate doping for nano-device fabrication. However, ZnO based nanowires grown by MOCVD process were had the principal problems of 1st interfacial layers between substrate and nanowire, 2nd a broad diameter (about 100 nm), and 3rd high density, and 4th critical evaporation temperature of Zinc precursors. In particular, the growth of high performance nanowire for high efficiency nano-devices must be formed at high temperature growth, but zinc precursors were evaporated at high temperature.These problems should be repaired for materialization of ultra high performance quantum devices with quantum effect. For this reason, we firstly proposed the growth method of vertical aligned slim MgZnO nanowires (< 10 nm) without interfacial layers using self-phase separation by introduced Mg at critical evaporation temperature of Zinc precursors ($500^{\circ}C$). Here, the self-phase separation was reported that MgO-rich and the ZnO-rich phases were spontaneously formed by additionally introduced Mg precursors. In the growth of nanowires, the nanowires were only grown on the wurzite single crystal seeds as ZnO-rich phases with relatively low Mg composition (~36 at %). In this study, we investigated the microstructural behaviors of self-phase separation with increasing the Mg fluxes in the growth of MZO NWs, in order to secure drastic control engineering of density,diameter, and shape of nanowires.

  • PDF

Development of a Flow Analysis Code Using an Unstructured Grid with the Cell-Centered Method

  • Myong, Hyon-Kook;Kim, Jong-Tae
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2218-2229
    • /
    • 2006
  • A conservative finite-volume numerical method for unstructured grids with the cell-centered method has been developed for computing flow and heat transfer by combining the attractive features of the existing pressure-based procedures with the advances made in unstructured grid techniques. This method uses an integral form of governing equations for arbitrary convex polyhedra. Care is taken in the discretization and solution procedure to avoid formulations that are cell-shape-specific. A collocated variable arrangement formulation is developed, i.e. all dependent variables such as pressure and velocity are stored at cell centers. For both convective and diffusive fluxes the forms superior to both accuracy and stability are particularly adopted and formulated through a systematic study on the existing approximation ones. Gradients required for the evaluation of diffusion fluxes and for second-order-accurate convective operators are computed by using a linear reconstruction based on the divergence theorem. Momentum interpolation is used to prevent the pressure checkerboarding and a segregated solution strategy is adopted to minimize the storage requirements with the pressure-velocity coupling by the SIMPLE algorithm. An algebraic solver using iterative preconditioned conjugate gradient method is used for the solution of linearized equations. The flow analysis code (PowerCFD) developed by the present method is evaluated for its application to several 2-D structured-mesh benchmark problems using a variety of unstructured quadrilateral and triangular meshes. The present flow analysis code by using unstructured grids with the cell-centered method clearly demonstrate the same accuracy and robustness as that for a typical structured mesh.

Realistic individual 3D face modeling (사실적인 3D 얼굴 모델링 시스템)

  • Kim, Sang-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1187-1193
    • /
    • 2013
  • In this paper, we present realistic 3D head modeling and facial expression systems. For 3D head modeling, we perform generic model fitting to make individual head shape and texture mapping. To calculate the deformation function in the generic model fitting, we determine correspondence between individual heads and the generic model. Then, we reconstruct the feature points to 3D with simultaneously captured images from calibrated stereo camera. For texture mapping, we project the fitted generic model to image and map the texture in the predefined triangle mesh to generic model. To prevent extracting the wrong texture, we propose a simple method using a modified interpolation function. For generating 3D facial expression, we use the vector muscle based algorithm. For more realistic facial expression, we add the deformation of the skin according to the jaw rotation to basic vector muscle model and apply mass spring model. Finally, several 3D facial expression results are shown at the end of the paper.