• Title/Summary/Keyword: shape of the earth

Search Result 469, Processing Time 0.04 seconds

Experimental study on the influence of the ground surface slope on the longitudinal load transfer in shallow tunnel (얕은 터널에서 지표경사가 종방향 하중전이에 미치는 영향에 대한 실험적 연구)

  • Yim, Il Jae;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.887-903
    • /
    • 2017
  • Lots of shallow tunnels are constructed in the mountainous areas where the stress distribution in the ground around tunnel is not simple, also the impact of stress conditions on the longitudinal load transfer characteristics is unclear. The tunnel construction methods and the ground conditions would also affect the longitudinal load transfer characteristics which would be dependant on the displacement patterns of tunnel face. Therefore, in this study, the slope of the ground surface was varied in $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$, and the longitudinal load transfer depended on the deformation conditions of tunnelface (that were maximum deformation on the top, constant deformation, and maximum deformation on the bottom), and the stress distribution at tunnelface. As results, when the tunnelface deformed, the earth presure on the tunnelface decreased and the load at tunnel crown increased. The load transferred on the crown was influenced by the earth presure on tunnel face. Smaller load would be transfered to the wide areas when the slope of ground surface decreased. When the slope of ground surface became larger, the longitudinal load transfer would be smaller and would be concentrated on tunnelface, In addition, the shape of the transferred load distribution in the longitudinal direction was dependant on the deformation shape of tunnelface. The deformation shape of tunnelface and stress conditions in longitudinal sections would affect the shape and the magnitude of the load transfer in the longitudinal directions.

A study on the Kuei of the Jade Tablet, Hole of the Ivory Tablet, Ancient Korea and China, Japan (한.중.일 3국의 圭.笏에 관한 연구)

  • 임명미
    • Journal of the Korean Society of Costume
    • /
    • v.51 no.2
    • /
    • pp.5-25
    • /
    • 2001
  • Jade, which is a kind of stone, with its transparent body, lustrous and bright character, But jade is not the only fair stone. There are three kinds of jade objects 1) tallies used in the court. 2) ceremonial jades. 3) ordinary jade for decoration, for inlaid work and for burial. Among the ceremonial jade, the most important were the "liu jui" and "liu ch′i." The former was supposed to be held by people in the court as symbols of their authority : 1) "then-kuei(鎭圭)" for the emperor. 2) "hang-kuei(恒圭)" for a duke, 3) "hsin-kuei(信圭)" a marquis. 4) "kung-kuei(躬圭)" for an earl, these "kuei" were alike in shape, but differed in size. 4) "ku-pi(穀璧)" for a viscount. 5) "p′u-pi(蒲璧)" for a baron, "pi(璧)" differed in decoration but were alike in shape. "Liu ch′i(六器)" were ceremonial objects used by the emperor in worshipping Heaven, Earth, and the Four Directions : "ts′ang-pi(倉璧)," greenish jade disk, used in worthipping Heaven "huang-tsung(黃琮)," yellow jade cylinder, used in worshipping Earth ; "cuing-kuei,(靑圭)" blue jade tablet. used in worshipping the East : "chih-chang(赤璋)," red jade tablet, used in worshipping the South : "hsuan-huang(玄璜)," black crescent, used in worshipping the North. Five kinds of tallies were "chen-kuei(鎭圭)," "yenkuei(琰圭)," "yuan-kuei(玩圭)," "ku-kuei(穀圭)." They were used to console people during disaster, to subjugate an official who had committed a crime, to reward a prize to an official for his merit or good conduct, to arbitrate disputes between high officials, to marry princess. and to dispatch troops. Since the west wei(西魏), Kuei and Hole were made of Ivory, wood and bamboo, who had ivory for fifth grade and wood and bamboo for under sixth grade. After Eastern Chou, all officials beginning to had kuei hole. symbol of Authority. and his wives. After Dang dynasty, Japan is the same. In korea. After king Bupheung in ancient and South(unification) Silla, North Kingdom Bohai, Koryo, and Chosen dynasty had ceremonial jade, Kuei and Hole.

  • PDF

The Mineral Carbonation Using Steelmaking Reduction Slag (제강 환원슬래그의 광물탄산화)

  • Ryu, Kyoung-Won;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • Mineral carbonation for the storage of carbon dioxide is a CCS option that provides an alternative for the more widely advocated method of geological storage in underground formation. Carbonation of magnesium- or calcium-based minerals, especially the carbonation of waste materials and industrial by-products is expanding, even though total amounts of the industrial waste are too small to substantially reduce the $CO_2$ emissions. The mineral carbonation was performed with steelmaking reduction slag as starting material. The steelmaking reduction slag dissolution experiments were conducted in the $H_2SO_4$ and $NH_4NO_3$ solution with concentration range of 0.3 to 1 M at $100^{\circ}C$ and $150^{\circ}C$. The hydrothermal treatment was performed to the starting material via a modified direct aqueous carbonation process at the same leaching temperature. The initial pH of the solution was adjusted to 12 and $CO_2$ partial pressure was 1MPa for the carbonation. The carbonation rate after extracting $Ca^^{2+}$ under $NH_4NO_3$ was higher than that under $H_2SO_4$ and the carbonation rates in 1M $NH_4NO_3$ solution at $150^{\circ}C$ was dramatically enhanced about 93%. In this condition well-faceted rhombohedral calcite, and rod or flower-shaped aragonite were appeared together in products. As the concentration of $H_2SO_4$ increased, the formation of gypsum was predominant and the carbonation rate decreased sharply. Therefore it is considered that the selection of the leaching solution which does not affect the starting material is important in the carbonation reaction.

Seismic Facies Classification of Igneous Bodies in the Gunsan Basin, Yellow Sea, Korea (탄성파 반사상에 따른 서해 군산분지 화성암 분류)

  • Yun-Hui Je;Ha-Young Sim;Hoon-Young Song;Sung-Ho Choi;Gi-Bom Kim
    • Journal of the Korean earth science society
    • /
    • v.45 no.2
    • /
    • pp.136-146
    • /
    • 2024
  • This paper introduces the seismic facies classification and mapping of igneous bodies found in the sedimentary sequences of the Yellow Sea shelf area of Korea. In the research area, six extrusive and three intrusive types of igneous bodies were found in the Late Cretaceous, Eocene, Early Miocene, and Quaternary sedimentary sequences of the northeastern, southwestern and southeastern sags of the Gunsan Basin. Extrusive igneous bodies include the following six facies: (1) monogenetic volcano (E.mono) showing cone-shape external geometry with height less than 200 m, which may have originated from a single monogenetic eruption; (2) complex volcano (E.comp) marked by clustered monogenetic cones with height less than 500 m; (3) stratovolcano (E.strato) referring to internally stratified lofty volcanic edifices with height greater than 1 km and diameter more than 15 km; (4) fissure volcanics (E.fissure) marked by high-amplitude and discontinuous reflectors in association with normal faults that cut the acoustic basement; (5) maar-diatreme (E.maar) referring to gentle-sloped low-profile volcanic edifices with less than 2 km-wide vent-shape zones inside; and (6) hydrothermal vents (E.vent) marked by upright pipe-shape or funnel-shape structures disturbing sedimentary sequence with diameter less than 2 km. Intrusive igneous bodies include the following three facies: (1) dike and sill (I.dike/sill) showing variable horizontal, step-wise, or saucer-shaped intrusive geometries; (2) stock (I.stock) marked by pillar- or horn-shaped bodies with a kilometer-wide intrusion diameter; and (3) batholith and laccoliths (I.batho/lac) which refer to gigantic intrusive bodies that broadly deformed the overlying sedimentary sequence.

Multifractal Classification of the Disturbed Areas of the Sidi Chennane Phosphate Deposit, Morocco

  • Ayad, Abderrahim;Bakkali, Saad
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.231-239
    • /
    • 2022
  • The irregular shape of the disturbances is a fundamental issue for mining engineers at the Sidi Chennane phosphate deposit in Morocco. A precise classification of disturbed areas is therefore necessary to understand their part in the overall volume of phosphate. In this paper, we investigate the theoretical and practical aspects of studying and measuring multifractal spectrums as a defining and representative parameter for distinguishing between the phosphate deposit of a low rate of disturbances and the deposit of a high rate. An empirical multifractal approach was used by analyzing the disturbed areas through the geoelectric images of an area located in the Sidi Chennane phosphate deposit. The Generalized fractal dimension, D(q), the Singularities of strength, α(q), the local dimension, f(α) and their conjugate parameter the mass exponent, τ(q) as well as f(α)-α spectrum were the common multifractal parameters used. The results reported show wide variations of the analyzed images, indicating that the multifractal analysis is an indicator for evaluate and characterize the disturbed areas within the phosphates deposits through the studied geoelectric images. This could be the starting point for future work aimed at improving phosphate exploration planning.

Investigation on seismic behavior of combined retaining structure with different rock shapes

  • Lin, Yu-liang;Zhao, Lian-heng;Yang, T.Y.;Yang, Guo-lin;Chen, Xiao-bin
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.599-612
    • /
    • 2020
  • A combination of a gravity wall and an anchor beam is widely used to support the high soil deposit on rock mass. In this study, two groups of shaking table test were performed to investigate the responses of such combined retaining structure, where the rock masses were shaped with a flat surface and a curved surface, respectively. Meanwhile, the dynamic numerical analysis was carried out for a comparison or an extensive study. The results were studied and compared between the combined retaining structures with different shaped rock masses with regard to the acceleration response, the earth pressure response, and the axial anchor force. The acceleration response is not significantly influenced by the surface shape of rock mass. The earth pressure response on the combined retaining structure with a flat rock surface is more intensive than the one with a curved rock surface. The anchor force is significantly enlarged by seismic excitation with a main earthquake-induced increment at the first intensive pulse of Wenchuan motion. The value of anchor force in the combined retaining structure with a flat rock surface is generally larger than the one with a curved rock surface. Generally, the combined retaining structure with a curved rock surface presents a better seismic performance.

Experimental und Numerical Sensitivity Analyses on Push Pull Tracer Tests

  • Hwang, Hyeon-Tae;Lee, Gang-Geun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.312-316
    • /
    • 2004
  • Single-well tracer tests, especially push pull tracer tests, are more effective to estimate hydraulic parameters and microbial metabolic activities in terms of duration and cost compared to multi-well tracer tests. However, there are some drawbacks in accuracy, complicated data analysis and uniqueness. These shortages are thought to be derived from the applied conditions which affect mass recovery curve and breakthrough curve. Factors such as extraction rate, resting period, hydraulic conductivity and hydraulic gradient are considered as the major factors determining the mass recovery rate and shape of the breakthrough curve. The results of the sensitivity analysis are summarized as follows: 1) the significant change in concentration of breakthrough curve is obtained when the extraction rate increases. This effect would also be much higher if the hydraulic conductivity is lower; 2) the mass recovery rate decreases with the increase of resting time, and the difference of mass recovery rates for different resting times is inversely proportional to the hydraulic conductivity; 3) the sensitivity values decrease with time. The hydraulic conductivity affects not only the early period, but the later period of the breakthrough curves; 4) The influence of the hydraulic gradient on the breakthrough curves is greater at earlier stage than at later stage. The mass recovery rate is inversely proportional to the hydraulic gradient.

  • PDF

Regime Shift of the Early 1980s in the Characteristics of the Tropical Cyclone Affecting Korea

  • Choi, Ki-Seon;Kim, Tae-Ryong
    • Journal of the Korean earth science society
    • /
    • v.32 no.5
    • /
    • pp.453-460
    • /
    • 2011
  • By performing a statistical change-point analysis of activities of the tropical cyclones (TCs) that have affected Korea (K-TCs), it was found that there was a significant change between 1983 and 1984. During the period of 1984-2004 (P2), more TCs migrated toward the west, recurved in the southwest, and affected Korea, compared to the period of 1965-1983 (P1). These changes for P2 were related to the southwestward expansion of the subtropical western North Pacific high (SWNPH) and simultaneously elongation of its elliptical shape toward Korea. Because of these changes, the central pressure and lifetime of K-TC during P2 were deeper and longer, respectively, than figures for P1. This stronger K-TC intensity for P2 was related to the more southwestward genesis due to the southwestward expansion of the SWNPH. The weaker vertical wind shear environment during P2 was more favorable for K-TC to maintain a strong intensity in the mid-latitudes of East Asia.

Seismic fragility assessment of steel moment-resisting frames equipped with superelastic viscous dampers

  • Abbas Ghasemi;Fatemeh Arkavazi;Hamzeh Shakib
    • Earthquakes and Structures
    • /
    • v.25 no.5
    • /
    • pp.343-358
    • /
    • 2023
  • The superelastic viscous damper (SVD) is a hybrid passive control device comprising a viscoelastic damper and shape memory alloy (SMA) cables connected in series. The SVD is an innovative damper through which a large amount of seismic energy can dissipate. The current study assessed the seismic collapse induced by steel moment-resisting frames (SMRFs) equipped with SVDs and compared them with the performance of special MRFs and buckling restrained brace frames (BRBFs). For this purpose, nonlinear dynamic and incremental dynamic analysis (IDA) were conducted in OpenSees software. Both 5- and 9-story special MRFs, BRBFs, and MRFs equipped with the SVDs were examined. The results indicated that the annual exceedance rate for maximum residual drifts of 0.2% and 0.5% for the BRBFs and MRFs with SVDs, respectively, were considerably less than for SMRFs with reduced-beam section (RBS) connections and that the seismic performances of these structures were enhanced with the use of the BRB and SVD. The probability of collapse due to residual drift in the SVD, BRB, and RBS frames in the 9-story structure was 1.45, 1.75, and 1.05 times greater than for the 5-story frame.

Technology for the Detection of Corrosion Defects in Buried Pipes of Nuclear Power Plants with 3D FEM (3D 유한요소법을 이용한 원전 매설배관 부식결함 탐상기술 개발)

  • Kim, Jae-Won;Lim, Bu-Taek;Park, Heung-Bae;Chang, Hyun-Young
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.292-300
    • /
    • 2018
  • The modeling of 3D finite elements based on CAD data has been used to detect sites of corrosion defects in buried pipes. The results generated sophisticated profiles of electrolytic potential and vectors of current distributions on the earth surface. To identify the location of defects in buried pipes, the current distribution on the earth surface was projected to a plane of incidence that was identical to the pipe locations. The locations of minimum electrolytic potential value were found. The results show adequate match between the locations of real and expected defects based on modeling. In addition, the defect size can be calculated by integrating the current density curve. The results show that the defect sizes were $0.74m^2$ and $0.69m^2$, respectively. This technology may represent a breakthrough in the detection of indirect damage in various cases involving multiple defects in size and shape, complex/cross pipe systems, multiple anodes and stray current.