• Title/Summary/Keyword: shape memory alloy actuator

Search Result 116, Processing Time 0.023 seconds

A study on the Dynamic Characteristics of Bidirectional Acutator using Shape Memory Alloy (형상기억합금을 이용한 차동식 액츄에이터의 동특성연구)

  • 정상화;김현욱;장우양;김경석;차경래;나윤철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.755-758
    • /
    • 1997
  • In the recent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. The dynamic characteristic analysis of SMA is necessary for actuator application and many common researches report the material characteristics of SMA sufficiently. However, the research of dynamic characteristics is very deficient. In this paper, the helical spring is fabricated with NiTi SMA wire of high resistivity The force, response speed, temperature, and displacement are measured by digital force gauge, infrared thermometer, and laser displacement sensor so that the dynamic characteristics of this SMA actuator is analyzed.

  • PDF

Morphing of Composite Plate Using SMA Actuator (형상기억합금 작동기를 이용한 복합재 평판의 형상변형)

  • 김상헌;조맹효
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.146-149
    • /
    • 2003
  • Two-way shape memory effect(TWSME) under residual stresses are considered in the present study. The structure using two-way shape memory alloy(SMA) concept returns to its initial shape by increasing or decreasing temperature under the initially given residual stress. In the present study, we use a thermo-mechanical constitutive equation of SMA and laminated composite plates are considered as simple morphing structural components which are based on first order shear deformable laminated composite plate with large deflection. Numerical results of fully coupled SMA-composite structures are presented

  • PDF

Numerical Simulation of Double SMA wire Actuator Using Two-Way Shape Memory Effect of SMA (형상기억합금의 양방향효과를 이용한 두개의 형상기억합금선이 부착된 작동기의 수치해석)

  • Kim, Sang-Haun;Cho, Maeng-Hyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.287-290
    • /
    • 2004
  • A structure using the two-way shape memory effect (TWSME) returns to its initial shape by increasing or decreasing temperature under initial residual stress. Through the thermo-mechanical constitutive equation of shape memory alloy(SMA) proposed by Lagoudas et al., we simulate the behavior of a double actuator in which two SMA wires are attached to the tip of panel under the initially given residual stress. Through the numerical results conducted in the present study, the proposed actuator device is suitable for repeated actuation. The simulation algorithm proposed in the present study can be applied extensively to the analysis of the assembled .system of SMA-actuator and host structure in the practical applications.

  • PDF

Thermal Fatigue Degradation Behavior of Ni-Ti Shape Memory Alloy (Ti-Ni 형상기억합금의 열피로열화 거동)

  • 박영철;조용배;오세욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2913-2921
    • /
    • 1994
  • In SMA(shape memory alloy), the degradation by fatigue is one of the most important problems to be overcome, when SMA is used for robot-actuator material. The actuator is operated repeatitively for long time and its repeating operation develops the fatigue degradation of SMA. The fatigue degradation changes the transformation temperature and deformation behavior and results in inaccurate operation control of robot. Accordingly, the changing behavior of transformation temperature and deformation which results from repeating operation is to be investigated in advance and the scheme to resolve those problems have to be made for the design of actuator. In this study, the fatigue tests were carried out on SMA specimens prepared to have different condition of aging time and pre-strain with the direct-current heating-cooling method, which was a general method of operation in robot actuators. The behavior of transformation temperature and deformation were examined and analyzed in each specimen and the study was performed to establish the optimistic manufacturing condition of SMA against the fatigue degradation.

Smart Actuator-Control System Design Using Shape Memory Alloys (형상기억합금 응용 스마트 액추에이터-제어기 설계)

  • Kim, Youngshik;Jang, Tae-soo
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1451-1456
    • /
    • 2017
  • In this research we discuss an integrated actuator-control system for advanced control of a smart Shape Memory Alloy (SMA) actuator. Toward this goal, we designed and fabricated an actuator-control module combining two SMA actuating units with a single-chip microprocessor, two different sensing elements, and an actuator driver. In our proposed system, sensing elements include a 6-axis single-chip motion sensor for orientation measurement and a circuit for resistance measurement of SMA wires. We experimentally verified our proposed actuator-control system using actuator driving, sensor data readings, and communication tests.

A study on the Design of Bidirectional Actuator using NITINOL (NITINOL을 이용한 차동식 액츄에이터의 설계에 관한 연구)

  • 정상화;김현욱;신형성;차경래;신병수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.670-674
    • /
    • 2002
  • In the recent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. The dynamic characteristic analysis of SMA is necessary for actuator application and many common researches report the material characteristics of SMA sufficiently. However, the research on dynamic characteristics is very deficient. In this paper, the helical spring are fabricated with NiTi SMA wire of high resistivity. The force, response speed, temperature, and displacement are measured by digital force gauge, infrared thermometer, and laser displacement sensor so that the dynamic characteristics of this SMA is analyzed. Also, bidirectional actuator was fabricated and experimented for its performance.

  • PDF

A study on the Improvement of the Performance of Bidirectional SMA Actuator (차동식 형상기억합금 액츄에이터의 동작성능향상을 위한 연구)

  • 정상화;김현욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.155-159
    • /
    • 2004
  • In the recent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. The dydnamic characteristic analysis of SMA is necessary for actuator application and many common researches report the material characteristics of SMA sufficiently. However the research for dynamic characteristics is very deficient. In this paper, the helical suing are fabricated with NiTi SMA wire of high resistivity. The force, response speed, temperature, and displacement are measured by digital force gauge, infrared thermometer, and laser displacement sensor so that the dynamic characteristics of this SMA is analyzed. Also, bidicrectional actuator was fabricated and experimented for its performance.

  • PDF

A study on dynamic behavior of bidirectional SMA Actuator with forced-cooling (강제공냉 차동식 형상기억합금 액츄에이터의 동작특성에 관한 연구)

  • 정상화;김현욱;차경래
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.47-52
    • /
    • 2003
  • In the recent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. The dynamic characteristic analysis of SMA is necessary for actuator application and many common researches report the material characteristics of SMA sufficiently. However, the research on dynamic characteristics is very deficient. In this paper, the helical spring are fabricated with NiTi SMA wire of high resistivity. The force, response speed, temperature, and displacement are measured by digital force gauge, infrared thermometer, and laser displacement sensor so that the dynamic characteristics of this SMA is analyzed. Also, bidirectional actuator was fabricated and experimented fir its performance.

  • PDF

A study on the Improvement of the Performance of Biodirectional SM Actuator (NiTi 형상기억합금을 이용한 차동식 액츄에이터의 동작성능 향상을 위한 연구)

  • Jeong, Sang-Hwa;Kim, Hyon-Uk;Cha, Kyoung-Rae;Song, Suk;Shin, Byung-Su;Lee, Kyoung-Hyoung
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.346-351
    • /
    • 2003
  • In the recent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. The dynamic characteristic analysis of SMA is necessary for actuator application and many common researches report the material characteristics of SMA sufficiently. However, the research on dynamic characteristics is very deficient. In this paper, the helical spring are fabricated with NiTi SMA wire of high resistivity. The force, response speed, temperature, and displacement are measured by digital force gauge, infrared thermometer, and laser displacement sensor so that the dynamic characteristics of this SMT is analyzed. Also, bidirectional actuator was fabricated and experimented for its performance

  • PDF

A Study on Driving Mechanism of Robot Hand Driven by SMA based on Segmented Binary Control (구간분할 바이너리 제어기반 SMA 구동에 의한 로봇핸드의 운동 메커니즘에 관한 연구)

  • Jeong, Sang-Hwa;Park, Jun-Ho;Cha, Kyoung-Rae;Ryu, Shin-Ho;Kim, Gwang-Ho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.14-20
    • /
    • 2006
  • In recent year, as the robot technology is developed, the researches on the artificial muscle actuator that enables robot to move dexterously like biological organ become active. Actuators are key technologies underpinning robotics. Breakthroughs in actuator technology, particular in terms of power-to-weight ratio, or energy-density, will have significant impacts upon the design and control of robotic system. In this paper, a new approach to design and control of shape memory alloy(SMA) actuator is presented to drive the robot hand. SMA wire is divided into many segments and their thermal states of the SMA are controlled individually in a binary manner. This control manner will reduce the hysteresis that the SMA material has and it becomes the fundamental technology to develop the anthropomorphic robot hand. In this paper, the mechanism In the digital step motor of the shape memory alloy that is driven by the segmented binary control, which is a new control technique, is studied. This SMA digital step actuator applies for the robot hand and the driving mechanism of the robot hand is investigated.