• 제목/요약/키워드: shape memory alloy(SMA)

검색결과 296건 처리시간 0.021초

지능형 내시경용 초소형 형상기억합금 엑츄에이터의 제작에 관한 연구 (A Study on the Fabrication of Micro Shape Memory Alloy Actuator for Smart Catheter)

  • 김민성;박두환;박현철;이오걸;이준탁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2411-2413
    • /
    • 2001
  • A SMA actuator fabricated in this paper generates the large force and it's structure is very simple. The SMA actuator was fabricated by small size with diameter of 9mm and length of 27mm and also it's actuations toward all the directions can be acquired because of three springs which was fabricated with diameter of 2.4mm and 28 turns. We showed into applicability to smart catheter by analysing accurately the dynamic characteristics such as heading angle, force, displacement.

  • PDF

Nonlinear earthquake capacity of slender old masonry structures prestressed with steel, FRP and NiTi SMA tendons

  • Preciado, Adolfo;Ramirez-Gaytan, Alejandro;Gutierrez, Nayar;Vargas, David;Falcon, Jose Manuel;Ochoa, Gil
    • Steel and Composite Structures
    • /
    • 제26권2호
    • /
    • pp.213-226
    • /
    • 2018
  • This paper focuses on the seismic protection of slender old masonry structures by the implementation of prestressing devices at key locations. The devices are vertically and externally located inside the towers in order to be reversible and calibrated. An extensive parametric study on a selected slender tower is carried out based on more than 100 nonlinear static simulations aimed at investigating the impact of different parameters on the seismic performance: (i) different prestressing levels; (ii) shape memory alloy superelasticity and (iii) changes in prestressing-forces in all the stages of the analysis until failure and masonry toe crushing. The tendon materials under analysis are conventional prestressing steel, fiber-reinforced polymers of different fibers and shape memory alloys. The parametric study serves to select the most suitable prestressing device and optimal prestressing level able to dissipate more earthquake energy. The seismic energy dissipation is evaluated by comparing the structural capacity curves in original state and retrofitted.

Seismic performance of concrete frame structures reinforced with superelastic shape memory alloys

  • Alam, M. Shahria;Nehdi, Moncef;Youssef, Maged A.
    • Smart Structures and Systems
    • /
    • 제5권5호
    • /
    • pp.565-585
    • /
    • 2009
  • Superelastic Shape Memory Alloys (SMAs) are gaining acceptance for use as reinforcing bars in concrete structures. The seismic behaviour of concrete frames reinforced with SMAs is being assessed in this study. Two eight-storey concrete frames, one of which is reinforced with regular steel and the other with SMAs at the plastic hinge regions of beams and regular steel elsewhere, are designed and analyzed using 10 different ground motion records. Both frames are located in the highly seismic region of Western Canada and are designed and detailed according to current seismic design standards. The validation of a finite element (FE) program that was conducted previously at the element level is extended to the structure level in this paper using the results of a shake table test of a three-storey moment resisting steel RC frame. The ten accelerograms that are chosen for analyzing the designed RC frames are scaled based on the spectral ordinate at the fundamental periods of the frames. The behaviour of both frames under scaled seismic excitations is compared in terms of maximum inter-storey drift, top-storey drift, inter-storey residual drift, and residual top-storey drift. The results show that SMA-RC frames are able to recover most of its post-yield deformation, even after a strong earthquake.

형상기억합금을 이용한 열박음 공구홀더 개발 (Development of Shrink-Fit Tool Holder using Shape Memory Alloys)

  • 신우철;노승국;김병섭;박종권
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.889-894
    • /
    • 2010
  • Conventional shrink-fit tool holders have positive features, such as high accuracy, high strength, high stiffness and low sensitivity to centrifugal forces, but they require heavy investments for heating and cooling equipment. Generally the heating equipment has to heat the tool holder up to $200{\sim}300^{\circ}C$ for tool changes. This paper introduces a novel shrink-fit tool holder that is able to unclamp a tool at $40{\sim}50^{\circ}C$. This feature makes it possible to switch between the clamped and unclamped states by using a simple device, which has lower power, smaller size and lower cost than the heating equipment of the conventional shrink-fit tool holders. The proposed shrink-fit tool holder is able to expand its tool hole by using the shape memory alloys which are integrated in the tool holder body. Performances of the SMA shrink-fit tool holder were evaluated experimentally. The experimental results confirm that the proposed tool holder is feasible in aspects of clamping/unclamping operations, clamping force and repeatability of tool setup.

Parametric study of a new tuned mass damper with pre-strained SMA helical springs for vibration reduction

  • Hongwang Lv;Bin Huang
    • Smart Structures and Systems
    • /
    • 제31권1호
    • /
    • pp.89-100
    • /
    • 2023
  • This paper conducts a parametric study of a new tuned mass damper with pre-strained superelastic SMA helical springs (SMAS-TMD) on the vibration reduction effect. First, a force-displacement relation model of superelastic SMA helical spring is presented based on the multilinear constitutive model of SMA material, and the tension tests of the six SMA springs fabricated are implemented to validate the mechanical model. Then, a dynamic model of a single floor steel frame with the SMAS-TMD damper is set up to simulate the seismic responses of the frame, which are testified by the shaking table tests. The wire diameter, initial coil diameter, number of coils and pre-strain length of SMA springs are extracted to investigate their influences on the seismic response reduction of the frame. The numerical and experimental results show that, under different earthquakes, when the wire diameter, initial coil diameter and number of coils are set to the appropriate values so that the initial elastic stiffness of the SMA spring is between 0.37 and 0.58 times of classic TMD stiffness, the maximum reduction ratios of the proposed damper can reach 40% as the mass ratio is 2.34%. Meanwhile, when the pre-strain length of SMA spring is in a suitable range, the SMAS-TMD damper can also achieve very good vibration reduction performance. The vibration reduction performance of the SMAS-TMD damper is generally equal to or better than that of the classic optimal TMD, and the proposed damper effectively suppresses the detuning phenomena that often occurs in the classic TMD.

Analysis of extended end plate connection equipped with SMA bolts using component method

  • Toghroli, Ali;Nasirianfar, Mohammad Sadegh;Shariati, Ali;Khorami, Majid;Paknahad, Masoud;Ahmadi, Masoud;Gharehaghaj, Behnam;Zandi, Yousef
    • Steel and Composite Structures
    • /
    • 제36권2호
    • /
    • pp.213-228
    • /
    • 2020
  • Shape Memory Alloys (SMAs) are new materials used in various fields of science and engineering, one of which is civil engineering. Owing to their distinguished capabilities such as super elasticity, energy dissipation, and tolerating cyclic deformations, these materials have been of interest to engineers. On the other hand, the connections of a steel structure are of paramount importance because of their vulnerabilities during an earthquake. Therefore, it is indispensable to find approaches to augment the efficiency and safety of the connection. This research investigates the behavior of steel connections with extended end plates equipped hybridly with 8 rows of high strength bolts as well as Nitinol superelastic SMA bolts. The connections are studied using component method in dual form. In this method, the components affecting the connections behavior, such as beam flange, beam web, column web, extended end plate, and bolts are considered as parallel and series springs according to the Euro-Code3. Then, the nonlinear force- displacement response of the connection is presented in the form of moment-rotation curve. The results obtained from this survey demonstrate that the connection has ductility, in addition to its high strength, due to high ductility of SMA bolts.

Aseismic protection of historical structures using modern retrofitting techniques

  • Syrmakezis, C.A.;Antonopoulos, A.K.;Mavrouli, O.A.
    • Smart Structures and Systems
    • /
    • 제4권2호
    • /
    • pp.233-245
    • /
    • 2008
  • For historical masonry structures existing in the Mediterranean area, structural strengthening is of primary importance due to the continuous earthquake threat that is posed on them. Proper retrofitting of historical structures involves a thorough understanding of their structural pathology, before proceeding with any intervention measures. In this paper, a methodology is presented for the evaluation of the actual state of historical masonry structures, which can provide a useful tool for the seismic response assessment before and after the retrofitting. The methodology is mainly focused on the failure and vulnerability analysis of masonry structures using the finite element method. Using this methodology the retrofitting of historical structures with innovative techniques is investigated. The innovative technique presented here involves the exploitation of Shape Memory Alloy prestressed bars. This type of intervention is proposed because it ensures increased reversibility and minimization of interventions, in comparison with conventional retrofitting methods. In this paper, a case study is investigated for the demonstration of the proposed methodologies and techniques, which comprises a masonry Byzantine church and a masonry Cistern. Prestressed SMA alloy bars are placed into the load-bearing system of the structure. The seismic response of the non-retrofitted and the retrofitted finite element models are compared in terms of seismic energy dissipation and displacements diminution.

스마트 반강접 (PR) 콘크리트 충전 강재 합성 (CFT) 접합 구조물에 대한 해석모델의 개발 (Development of A Component and Advanced Model for The Smart PR-CFT Connection Structure)

  • 선우현;허종완
    • 복합신소재구조학회 논문집
    • /
    • 제2권4호
    • /
    • pp.1-10
    • /
    • 2011
  • 본 연구는 각 연결부에 대한 수치 해석을 통하여 강재-콘크리트 합성 프레임 구조물의 성능을 조사하였다. 본 연구의 혁신적인 측면은 강재 보와 CFT 기둥의 연결부 사용과 저탄소강과 형상 기억 합금 구성요소의 조합을 활용하는데 있다. 이러한 새로운 연결부의 목적은 지진 후 건물의 손상과 잔류 흐름을 줄이기 위해 고탄성 형상기억합금 인장부에서 발생하는 교정 작용과 저탄소강의 우수한 에너지 분산 능력을 활용하는 것이다. 연결부의 핀, 전체적인 고정 또는 부분 구속으로 모델링을 할 수 없기 때문에 이러한 구조물들의 해석과 설계는 복잡하여 PR-CFT 연결부의 전체적인 거동을 알기 위한 수치해석을 위해 정교한 3차원 솔리드 요소로 구성된 유한해석 모델을 개발하였다. 이러한 유한요소 해석으로 얻은 결과를 바탕으로 스프링 요소를 이용하여 간단한 연결부 모델링을 공식화 시켰다. 반복 하중을 가하여 전체 프레임 구조물의 거동을 확인하였고 3D 유한요소 해석을 통하여 단순 거동을 비교하였다.

초탄성 니티놀 형상기억합금의 준정적 거동에 대한 수치해석적 재현 (Numerical Simulation for the Quasi-static Behavior of Superelastic Nitinol Shape Memory Alloys (SMAs))

  • 허종완
    • 한국강구조학회 논문집
    • /
    • 제27권6호
    • /
    • pp.493-501
    • /
    • 2015
  • 초탄성 형상기억합금은 상온에서 소성 범위를 초월하여 상당량의 변위를 가하더라도 하중을 제거 후에 별도의 열처리를 가하지 않더라도 원상태로 복원이 가능한 특수한 금속이다. 자동치유가 가능한 형상기억합금의 특유한 재료적인 성질로 인하여 구조물에서 변위가 집중되는 부분에 기존에 주로 사용되는 강재를 대체하여 이러한 특수 합금 재료가 널리 활용되기 시작하였다. 하지만 형상기억합금을 활용한 구조물의 기본적인 설계와 성능 검증을 하기 위해 고등적인 구조해석에 필요한 재료적인 모델의 개발과 연구의 노력이 부족하기 때문에 본 재료를 현장에서 적용하기에는 여전히 많은 제약을 받고 있다. 따라서 본 연구에서는 초탄성 형상기억합금의 거동을 수치해석적인 방법으로 재현이 가능한 구성적인 재료 모델의 소개와 프로그램 코딩에 대하여 다루고자 한다. 또한 본 연구에서 제시된 재료 모델의 타당성을 입증하기 위하여 수치해석적으로 재현된 물리적인 거동을 실험에서 얻어진 데이터에 비교 및 보정 작업도 수행하였다. 아울러 이러한 재료 모델로 구현된 초탄성 형상기억합금의 물리적인 물성치를 구조 해석에 적용하고 정확성을 검증하여 현장 적용의 타당성을 입증하였다.

Pilot study for investigating behavior of recentering frame connection equipped with friction damper

  • Kim, Young Chan;Hu, Jong Wan
    • Steel and Composite Structures
    • /
    • 제44권4호
    • /
    • pp.569-586
    • /
    • 2022
  • This study introduces a novel friction damper as a component of a recentering frame connection, to solve the problem of structural repair costs, caused by stiffness deterioration and brittle fracture of the central brace frame (CBF). The proposed damper consists of shape memory alloy (SMA) bars with pretension applied to them to improve the stability. SMAs reduce the residual displacement by virtue of the properties of the materials themselves; in addition, a pretension can be applied to partially improve their energy dissipation capacity. The damper also consists of a friction device equipped with friction bolts for increased energy dissipation. Therefore, a study was conducted on the effects of the friction device as well as the pretension forces on the friction damper. For performance verification, 12 cases were studied and analyzed using ABAQUS program. In addition, the friction and pretension forces were used as variables in each case, and the results were compared. As a result, when the pretension and friction force are increased, the energy dissipation capacity gradually increases by up to about 94% and the recentering capacity decreases by up to about 55%. Therefore, it has been shown that SMA bars with adequate pretension in combination with bolts with adequate frictional force effectively reduce residual deformation and increase damper capacity. Thus, this study has successfully proposed a novel friction damper with excellent performance in terms of recentering and energy dissipation capacity.