• Title/Summary/Keyword: shape memory alloy(SMA)

Search Result 294, Processing Time 0.025 seconds

Optimum design and vibration control of a space structure with the hybrid semi-active control devices

  • Zhan, Meng;Wang, Sheliang;Yang, Tao;Liu, Yang;Yu, Binshan
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.341-350
    • /
    • 2017
  • Based on the super elastic properties of the shape memory alloy (SMA) and the inverse piezoelectric effect of piezoelectric (PZT) ceramics, a kind of hybrid semi-active control device was designed and made, its mechanical properties test was done under different frequency and different voltage. The local search ability of genetic algorithm is poor, which would fall into the defect of prematurity easily. A kind of adaptive immune memory cloning algorithm(AIMCA) was proposed based on the simulation of clone selection and immune memory process. It can adjust the mutation probability and clone scale adaptively through the way of introducing memory cell and antibody incentive degrees. And performance indicator based on the modal controllable degree was taken as antigen-antibody affinity function, the optimization analysis of damper layout in a space truss structure was done. The structural seismic response was analyzed by applying the neural network prediction model and T-S fuzzy logic. Results show that SMA and PZT friction composite damper has a good energy dissipation capacity and stable performance, the bigger voltage, the better energy dissipation ability. Compared with genetic algorithm, the adaptive immune memory clone algorithm overcomes the problem of prematurity effectively. Besides, it has stronger global searching ability, better population diversity and faster convergence speed, makes the damper has a better arrangement position in structural dampers optimization leading to the better damping effect.

Hysteresis Behavior of Partially Restrained Smart Connections for the Seismic Performance of Composite Frame (CFT 합성골조의 내진성능을 위한 스마트 반강접합의 이력거동)

  • Kim, Joo Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.99-108
    • /
    • 2015
  • The partially restrained smart CFT (concrete filled tube) column-to-beam connections with top-seat split T connections show various behavior characteristics according to the changes in the diameter and tightening force of the fastener, the geometric shape of T-stub, and material properties. This paper presents results from a systematic three-dimensional nonlinear finite element study on the structural behavior of the top-seat split T connections subjected to cyclic loadings. This connection includes super-elastic shape memory alloy (SMA) T-stub and rods to obtain the re-centering capabilities as well as great energy dissipation properties of the CFT composite frame. A wide scope of additional structural behaviors explain the influences of the top-seat split T connections parameters, such as the different thickness and gage distances of split T-stub.

A novel longitudinal seismic self-centering system for RC continuous bridges using SMA rebars and friction dampers

  • Xiang, Nailiang;Jian, Nanyi;Nonaka, Tetsuya
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.435-444
    • /
    • 2022
  • This study proposes a novel longitudinal self-centering earthquake resistant system for reinforced concrete (RC) continuous bridges by using superelastic shape memory alloy (SMA) reinforcement and friction dissipation mechanism. The SMA reinforcing bars are implemented in the fixed piers to provide self-recentering forces, while the friction dampers are used at the movable substructures like end abutments to enhance the energy dissipation of the bridge system. A reasonable balance between self-centering and energy dissipation capacities should be well achieved by properly selecting the parameters of the SMA rebars and friction dampers. A two-span continuous bridge with one fixed pier and two abutments is chosen as a prototype for illustration. Different longitudinal earthquake resistant systems including the proposed one in this study are investigated and compared. The results indicate that compared with the designs of over-dissipation (e.g., excessive friction) and over-self-centering (e.g., pure SMAs), the proposed system with balanced design between self-centering and energy dissipation would perform satisfactorily in controlling both the peak and residual displacement ratios of the bridge system.

Some Research Topics of Ben′s Laboratory at Nihon University in Japan (일본내 연구동향 (6편중 제3편))

  • Ben, Goichi
    • Composites Research
    • /
    • v.15 no.2
    • /
    • pp.48-54
    • /
    • 2002
  • This paper presents some research topics for advanced composites which have been conducted in Ben laboratory, College of industrial Technology, Nihon University. The topics are applications of shape memory alloy(SMA) to composite structures, dynamic responses of CFRP and GFRP structures, fabrication of new type of GFRP, fatigue and weatherability strength of CFRP and new concept of joint for FRP structures, respectively.

Ti-50.lat.% Ni 합금의 변태거동에 미치는 시효처리의 영향

  • 박성범;류부형;우흥식
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.10a
    • /
    • pp.107-112
    • /
    • 2003
  • 형상기억합금(shape memory alloy; SMA)은 소성가공을 통하여 원하는 형태로 변형시킨 이후에도(현재로서는 최대 10%미만의 변형) 일정조건의 열을 가하면 원래의 형상으로 복원되는 합금을 말한다. 형상기억효과는 고상(solid state)에서의 금속조직이 오스테나이트(austenite: 이하 A 또는 B2상)로부터 마르텐사이트(martensite: 이하 M 또는 B19'상)로, 다시 역으로 마르텐사이트에서 오스테나이트로의 변태에 기인되는 것으로 밝혀지고 있으며 이러한 변태는 온도유기변태(temperature induced transformation)와 응력유기변태(stress induced transformation)로 분류할 수 있다.(중략)

  • PDF

차동식 형상기억합금 액츄에이터의 강제 공냉 동작특성에 관한 연구

  • 정상화;김현욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.146-146
    • /
    • 2004
  • 최근 전 세계적으로 사람이 직접 작업할 수 없는 환경이나 작은 공간에서의 용이한 작업수행을 위해서 초소형 정밀 기계 기술에 관한 연구 및 개발이 활발하게 이루어지면서 형상기억합금(Shape Memory Alloy : SMA)을 이용한 초소형 액츄에이터(Micro Actuator)에 관한 관심이 증대되고 있다. 그 이유 중의 하나는 형상기억합금을 이용한 구동 방식은 다른 구동 방식보다 높은 에너지 대 부피비율을 가지고 있기 때문에 기존의 모터에 의한 구동보다 소형화가 간단하기 때문이다.(중략)

  • PDF

A study on the Thermal Buckling and Postbuckling of a Laminated Composite Beam with Embedded SMA Actuators (형상기억합금 선을 삽입한 복합적층 보의 열좌굴 및 좌굴후 거동에 관한 연구)

  • Choi, S.;Lee, J.J.;Lee, D.C.
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.55-65
    • /
    • 1999
  • In this paper, the thermal buckling and postbuckling behaviour of composite beam with embedded shape memory alloy (SMA) wires are investigated experimentally and analytically. The results of thermal buckling tests on uniformly heated, clamped, composite beam embedded with SMA wire actuators are presented and discussed in consideration of geometric imperfections, slenderness ratio of beam and embedding position of SMA wire actuators. The shape recovery force can reduce the thermal expansion of composite laminated beam, which result in increment of the critical buckling temperature and reduction of the lateral deflection of postbuckling behaviours. It is presented quantitatively on the temperature-load-deflection behaviour records how the shape recovery force affects the thermal buckling. The cross tangential method is suggested to calculate the critical buckling temperature on the temperature-deflection plot. Based on the experimental analysis, the new formula is also proposed to describe the critical buckling temperature of a laminated composite beam with embedded SMA wire actuators.

  • PDF

Theoretical analysis of superelastic SMA helical structures subjected to axial and torsional loads

  • Zhou, Xiang;You, Zhong
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1271-1291
    • /
    • 2015
  • Helical structures made of superelastic shape memory alloys are widely used as interventional medical devices and active actuators. These structures generally undergo large deformation during expansion or actuation. Currently their behaviour is modelled numerically using the finite element method or obtained through experiments. Analytical tools are absent. In this paper, an analytical approach has been developed for analyzing the mechanical responses of such structures subjected to axial and torsional loads. The simulation results given by the analytical approach have been compared with both numerical and experimental data. Good agreements between the results indicate that the analysis is valid.

Shape memory alloy (SMA)-based head and neck immobilizer for radiotherapy

  • Lee, Hyun-Taek;Kim, Sung-In;Park, Jong Min;Kim, Ho-Jin;Song, Dae-Seob;Kim, Hyung-Il;Wu, Hong-Gyun;Ahn, Sung-Hoon
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.176-182
    • /
    • 2015
  • Head-and-neck cancer is often treated with intensive irradiation focused on the tumor, while delivering the minimum amount of irradiation to normal cells. Since a course of radiotherapy can take 5-6 weeks or more, the repeatability of the patient posture and the fastening method during treatment are important determinants of the success of radiotherapy. Many devices have been developed to minimize positional discrepancies, but all of the commercial devices used in clinical practice are operated manually and require customized fixtures for each patient. This is inefficient and the performance of the fixture device depends on the operator's skill. Therefore, this study developed an automated head-and-neck immobilizer that can be used during radiotherapy and evaluated the positioning reproducibility in a phantom experiment. To eliminate interference caused by the magnetic field from computed tomography hardware, Ni-Ti shape-memory alloy wires were used as the actuating elements of the fixtures. The resulting positional discrepancy was less than 5 mm for all positions, which is acceptable for radiotherapy.

Design and Fabrication of Soft Deformable Wheel Robot using Composite Materials and Shape Memory Alloy Coil Spring Actuators (복합 재료와 형상 기억 합금 코일 스프링 구동기를 이용한 유연하게 변형 가능한 바퀴 로봇의 설계 및 제작)

  • Koh, Je-Sung;Lee, Dae-Young;Kim, Ji-Suk;Kim, Seung-Won;Cho, Kyu-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.47-52
    • /
    • 2013
  • In order to operate a search and rescue robot in hazardous area, the robot requires high mobility and adaptable locomotion for moving in unpredictable environments. In this paper, we propose the deformable soft wheel robot that can produce three kinds of driving modes; caterpillar driving mode, normal wheel driving mode, legged-wheel driving mode. The robot changes its driving mode as it faces the various obstacles such as a small gap, stairs etc. Soft film and composite materials are used for fabrication of deformable wheel structure and Shape Memory Alloy (SMA) coil spring actuators are attached on the structure as an artificial muscle. Film lamination and an composite manufacturing process is introduced and the robot design is required to be modified and compromised to applying the manufacturing process. The prototype is developed and tested for verifying feasibility of the deformable wheel locomotion.