• Title/Summary/Keyword: shape functions

Search Result 1,037, Processing Time 0.026 seconds

Infinite Boundary Elements for Soil-Structure Interaction Analysis in Time Domain (지반-구조물 상호작용의 시간영역 해석을 위한 무한경계요소)

  • 윤정방;최준성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.137-144
    • /
    • 1994
  • In this study, a new procedure for solving 2-D dynamic problems of semi-infinite medium in time domain by boundary element method (BEM) is presented. Efficient modelling of the far field region, infinite boundary elements are introduced. The shape function of the infinite boundary element is a combination of decay functions and Laguerre functions. Though the present shape functions have been developed for the time domain analysis, they may be also applicable to the frequency domain analysis. Through the response analysis in a 2-D half space under a uniformly distributed dynamic load, it has been found that an excellent accuracy can be achieved compared with the analytical solution

  • PDF

(4+n)-noded Moving Least Square(MLS)-based finite elements for mesh gradation

  • Lim, Jae Hyuk;Im, Seyoung
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.91-106
    • /
    • 2007
  • A new class of finite elements is described for dealing with mesh gradation. The approach employs the moving least square (MLS) scheme to devise a class of elements with an arbitrary number of nodal points on the parental domain. This approach generally leads to elements with rational shape functions, which significantly extends the function space of the conventional finite element method. With a special choice of the nodal points and the base functions, the method results in useful elements with polynomial shape functions for which the $C^1$ continuity breaks down across the boundaries between the subdomains comprising one element. Among those, (4 + n)-noded MLS based finite elements possess the generality to be connected with an arbitrary number of linear elements at a side of a given element. It enables us to connect one finite element with a few finite elements without complex remeshing. The effectiveness of the new elements is demonstrated via appropriate numerical examples.

Interface element method (IEM) for a partitioned system with non-matching interfaces (일치하지 않는 경계를 갖는 분리된 시스템을 위한 계면 요소법)

  • Kim, Hyun-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.324-329
    • /
    • 2001
  • A novel method for non-matching interfaces on the boundaries of the finite elements in partitioned domains is presented by introducing interface elements in this paper. The interface element method (IEM) satisfies the continuity conditions exactly through interfaces without recourse to the Lagrange multiplier technique. The moving least square (MLS) approximation in the present study is implemented to construct the shape functions of the interface elements. Alignment of the boundaries of sub-domains in the MLS approximation and integration domains provides a consistent numerical integration due to one form of rational functions in an integration domain. The compatibility of displacements on the boundaries of the finite elements and the interface elements is always preserved in this method, and the completeness of the shape functions of the interface elements guarantees the convergence of numerical solutions. The numerical examples show that the interface element method is a useful tool for the analysis of a partitioned system and for a global-local analysis.

  • PDF

An Axially Moving Thermoelastic Beam-plate: Spectral Element Modeling and Analysis (이동하는 열탄성 보-평판의 진동에 대한 스펙트럴요소 해석)

  • Kwon Kyung-Soo;Cho Joo-Yong;Lee U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.344-349
    • /
    • 2005
  • The axially moving thin beam-plates exposed to sudden thermal loadings may experience severe vibrations through the thermal shock process. For accurate prediction of the thermal shock-induced vibrations, this paper develops a spectral element model for axially moving thermoelastic beam-plates. The spectral element model which is represented by spectral element matrix is formulated from the frequency-dependent dynamic shape functions which satisfy the governing equations in the frequency-domain. Thus, when compared with the classical finite element model in which simple polynomial functions are used as the shape functions, the spectral element model can provide exact solution by treating a whole uniform structure member as a single finite element, regardless of its length.

  • PDF

AN AVERAGE OF SURFACES AS FUNCTIONS IN THE TWO-PARAMETER WIENER SPACE FOR A PROBABILISTIC 3D SHAPE MODEL

  • Kim, Jeong-Gyoo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.751-762
    • /
    • 2020
  • We define the average of a set of continuous functions of two variables (surfaces) using the structure of the two-parameter Wiener space that constitutes a probability space. The average of a sample set in the two-parameter Wiener space is defined employing the two-parameter Wiener process, which provides the concept of distribution over the two-parameter Wiener space. The average defined in our work, called an average function, also turns out to be a continuous function which is very desirable. It is proved that the average function also lies within the range of the sample set. The average function can be applied to model 3D shapes, which are regarded as their boundaries (surfaces), and serve as the average shape of them.

A Moving Least Squares weighting function for the Element-free Galerkin Method which almost fulfills essential boundary conditions

  • Most, Thomas;Bucher, Christian
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.315-332
    • /
    • 2005
  • The Element-free Galerkin Method has become a very popular tool for the simulation of mechanical problems with moving boundaries. The internally applied Moving Least Squares interpolation uses in general Gaussian or cubic weighting functions and has compact support. Due to the approximative character of this interpolation the obtained shape functions do not fulfill the interpolation conditions, which causes additional numerical effort for the application of the boundary conditions. In this paper a new weighting function is presented, which was designed for meshless shape functions to fulfill these essential conditions with very high accuracy without any additional effort. Furthermore this interpolation gives much more stable results for varying size of the influence radius and for strongly distorted nodal arrangements than existing weighting function types.

Design Optimization of Transonic Airfoils Based on the Navier-Stokes Equation (Navier-Stokes 방정식을 이용한 천음속 익형의 설계최적화 연구)

  • Lee Hyeong Min;Jo Chang Yeol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.177-185
    • /
    • 1999
  • The airfoil design optimization procedures based on the Navier-Stokes equations were developed, This procedure enables more realistic and practical transonic airfoil designs. The modified Hicks-Henne functions were used to generate the shape of airfoils. Five Hick-Henne functions were used to design upper surface of airfoil only. To enhance the ability of Hick-Henne function to generate various airfoil shape with limited number of functions, the positions of control points were adjusted through optimization procedure. The design procedure was applied to the single-point design for the drag minimization problem with lift and area constraints. The result shows the capability of the procedure to generate much realistic airfoils with very small drag-creep in the low transonic regime. This is mainly due to the viscosity effect of Navier-Stokes flow analysis. However, in the higher transonic range tile drag-creep appears. The multi-point design is shown to be an effective way to avoid the drag-creep and improve off-design performance which is very similar in the Euler design.

  • PDF

Free Vibrations of Tapered Beams with Constant Surface Area (일정표면적 변단면 보의 자유진동)

  • Lee, Byoung-Koo;Oh, Sang-Jin;Park, Chang-Eun;Lee, Tae-Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.66-73
    • /
    • 2011
  • This paper deals with free vibrations of the tapered beams with the constant surface area. The surface area of the objective beams are always held constant regardless shape functions of the cross-sectional depth. The shape functions are chosen as the linear and parabolic ones. Ordinary differential equations governing free vibrations of such beams are derived and solved numerically for determining the natural frequencies. In the numerical examples, hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, the relationships between non-dimensional frequency parameters and various beam parameters such as section ratio, surface area ratio, end constraint and taper type are reported in tables and figures. Especially, section ratios of the strongest beam are calculated, under which the maximum frequencies are achieved.

Shape Optimization Technique for Thin Walled Beam of Automotive Structures Considering Vibration

  • Lee, Sang-Beom;Yim, Hong-Jae;Pyun, Sung-Don
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2E
    • /
    • pp.63-70
    • /
    • 2002
  • In this paper, an optimization technique for thin walled beams of vehicle body structure is proposed. Stiffness of thin walled beam structure is characterized by the thickness and typical section shape of the beam structure. Approximate functions for the section properties such as area, area moment of inertia, and torsional constant are derived by using the response surface method. The approximate functions can be used for the optimal design of the vehicle body that consists of complicated thin walled beams. A passenger car body structure is optimized to demonstrate the proposed technique.

Free Vibrations of Tapered Circular Arches with Constant Volume (일정체적 변단면 원호형 아치의 자유진동)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Yoon, Hee-Min;Choi, Jong-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.144-152
    • /
    • 2010
  • This paper deals with free vibrations of the tapered circular arches with constant volume, whose cross sectional shape is the solid regular polygon. Volumes of the objective arches are always held constant regardless shape functions of the cross-sectional depth. The shape functions are chosen as the linear, parabolic and sinusoidal ones. Ordinary differential equations governing free vibrations of such arches are derived and solved numerically for determining the natural frequencies. In the numerical examples, hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, the relationships between non-dimensional frequency parameters and various arch parameters such as rise ratio, section ratio, side number, volume ratio and taper type are reported in tables and figures.