• Title/Summary/Keyword: shallow-water design wave

Search Result 36, Processing Time 0.018 seconds

New procedure for determining equivalent deep-water wave height and design wave heights under irregular wave conditions

  • Kang, Haneul;Chun, Insik;Oh, Byungcheol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.168-177
    • /
    • 2020
  • Many coastal engineering designs utilize empirical formulas containing the Equivalent Deep-water Wave Height (EDWH), which is normally given a priori. However, no studies have explicitly discussed a method for determining the EDWH and the resulting design wave heights (DEWH) under irregular wave conditions. Unfortunately, it has been the case in many design practices that the EDWH is incorrectly estimated by dividing the Shallow-water Wave Height (SWH) at the structural position with its corresponding shoaling coefficient of regular wave. The present study reexamines the relationship between the Shallow-water Wave Height (SWH) at the structural position and its corresponding EDWH. Then, a new procedure is proposed to facilitate the correct estimation of EDWH. In this procedure, the EDWH and DEWH are determined differently according to the wave propagation model used to estimate the SWH. For this, Goda's original method for nonlinear irregular wave deformation is extended to produce values for linear shoaling. Finally, exemplary calculations are performed to assess the possible errors caused by a misuse of the wave height calculation procedure. The relative errors with respect to the correct values could exceed 20%, potentially leading to a significant under-design of coastal or harbor structures in some cases.

Shallow-water Design Waves at Gangreung Beach through the Analysis of Long-term Measured Wave Data and Numerical Simulation Using Deepwater Wave Conditions (장기 파랑관측자료 분석 및 천해파 수치실험에 의한 강릉 해역의 천해설계파)

  • Jeong, Weon Mu;Jun, Ki Cheon;Kim, Gunwoo;Oh, Sang-Ho;Ryu, Kyong-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.5
    • /
    • pp.343-351
    • /
    • 2012
  • In this study, shallow-water design waves are calculated for the return period of 10, 20, 30, and 50 years, based on the extreme value analysis of the wave measurement data at Gangneung beach. These values are compared with the results of SWAN simulation with the boundary condition of the deep-water design waves of the corresponding return periods at the Gangneung sea area provided by the Fisheries Agency (FA, 1988) and Korea Ocean Research & Development Institute (KORDI, 2005). It is found that the shallow-water wave heights at Gangneung beach calculated by the deep-water design waves were significantly less than the observation data. As the return period becomes higher, the significant wave heights obtained by the extreme value analysis becomes higher than those computed by SWAN with the deep-water design waves of the corresponding return periods. KORDI computed the hindcast wave data from January 2004 to August 2008 by WAM with a finer-grid mesh system than those of previous studies. Comparisons of the wave hindcast results with the wave observation show that the reproducibility of the winter-season storm wave was considerably improved compared to the hindcast data from 1979 to 2003. Hereafter, it is necessary to carry out hindcast wave data for the years before 2004 using WAM with the finer-grid mesh system and to supplement the deep-water design wave.

Comparison of the Shallow-Water Design Wave Height on the Korean East Coast Based on Wave Observation Data and Numerical Simulation (장기파랑관측자료와 수치실험에 의한 동해안 천해설계파고 검토)

  • Jeong, Weon-Mu;Choi, Hyukjin;Cho, Hong-Yeon;Oh, Sang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.5
    • /
    • pp.292-302
    • /
    • 2016
  • In this study, shallow-water design waves are estimated for various return periods based on statistical analysis of extreme waves observed 13 years at four stations on the Korean east coast (Sokcho, Mukho, Hupo, Jinha). These values are compared with the results from SWAN simulation by using the deep water design waves conventionally used in Korea (KORDI, 2005). It was found that the simulated values of the shallow-water design waves are comparatively smaller than the values from the extreme value analysis, expecially below 30 years frequency, which implies possible under-estimation of the deep-water design waves on the Korean east coast.

Inundation Analysis Considering Water Waves and Storm Surge in the Coastal Zone (연안역에서 고파랑과 폭풍해일을 고려한 침수해석)

  • Kim, Do-Sam;Kim, Ji-Min;Lee, Gwang-Ho;Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.35-41
    • /
    • 2007
  • In general, coastal damage is mostly occurred by the action of complex factors, like severe water waves. If the maximum storm surge height combines with high tide, severe water waves will overflow coastal structures. Consequently, it can be the cause of lost lives and severe property damage. In this study, using the numerical model, the storm surge was simulated to examine its fluctuation characteristics at the coast in front of Noksan industrial complex, Korea. Moreover, the shallow water wave is estimated by applying wind field, design water level considering storm surge height for typhoon Maemi to SWAN model. Under the condition of shallow water wave, obtained by the SWAN model, the wave overtopping rate for the dike in front of Noksan industrial complex is calculated a hydraulic model test. Finally, based on the calculated wave-overtopping rate, the inundation regime for Noksan industrial complex was predicted. And, numerically predicted inundation regimes and depths are compared with results in a field survey, and the results agree fairly well. Therefore, the inundation modelthis study is a useful tool for predicting inundation regime, due to the coastal flood of severe water wave.

Shoaling Prediction by the Statistical Joint Distribution in the Shallow Water Region (천해역에 있어서의 결합확률분포의 천수변형에 대한 연구)

  • 권정곤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.1
    • /
    • pp.14-20
    • /
    • 1991
  • Accurate estimation of irregular wave transformation when the waves propagate from deep water to shallow water region is very important for the design of coastal structures and establishing beach erosion control. In this study. the transformation of directional spectrum is tested numerically using a conservation equation for energy flux and. based upon the joint distribution of wave height. period and wave direction. shoaling effects are predicted in the shallow water region. The applicability of the proposed procedure is verified through comparison with field observation data.

  • PDF

A Study on the Methods to Improve High-Wave Reproducibility during Typhoon (태풍 내습 시의 고파 재현성 개선방안 연구)

  • Jong-Dai, Back;Kyong-Ho, Ryu;Jong-In, Lee;Weon-Mu, Jeong;Yeon-S., Chang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.177-187
    • /
    • 2022
  • This study estimates the design wave in the event of a typhoon attack at Busan new port using the wind field, the revised shallow water design wave estimation method proposed by the Ministry of Oceans and Fisheries in 2020, and proposed a reliable method of calculating the shallow water design through verification with the wave observation data. As a result of estimating typhoon wave using the wind field and SWAN numerical model, which are commonly used in the field work, for typhoon that affected Busan new port, it was found that reproducibility was not good except typhoons KONG-REY(1825) and MAYSAK(2009). In particular, in the case of typhoon MAEMI(0314), which had the greatest impact on Busan new port, the maximum significant wave height was estimated to be about 35.0% smaller than that of the observed wave data. Therefore, a plan to improve the reproducibility of typhoon wave was reviewed by applying the method of correcting the wind field and the method of using the Boussinesq equation numerical model, respectively. As a result of the review, it was found that the reproducibility of the wind field was not good as before when the wind field correction. However as a method of linking wind field data, SWAN model results, and Boussinesq numerical model, typhoon wave was estimated during typhoon MAEMI(0314), and the maximum significant wave was similar to the wave observations, so it was reviewed to have good reproducibility.

Deformation of Non-linear Dispersive Wave over the Submerged Structure (해저구조물에 대한 비선형분산파의 변형)

  • Park, D.J.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.75-86
    • /
    • 1998
  • To design a coastal structure in the nearshore region, engineers must have means to estimate wave climate. Waves, approaching the surf zone from offshore, experience changes caused by combined effects of bathymetric variations, interference of man-made structure, and nonlinear interactions among wave trains. This paper has attempted to find out the effects of two of the more subtle phenomena involving nonlinear shallow water waves, amplitude dispersion and secondary wave generation. Boussinesq-type equations can be used to model the nonlinear transformation of surface waves in shallow water due to effect of shoaling, refraction, diffraction, and reflection. In this paper, generalized Boussinesq equations under the complex bottom condition is derived using the depth averaged velocity with the series expansion of the velocity potential as a product of powers of the depth of flow. A time stepping finite difference method is used to solve the derived equation. Numerical results are compared to hydraulic model results. The result with the non-linear dispersive wave equation can describe an interesting transformation a sinusoidal wave to one with a cnoidal aspect of a rapid degradation into modulated high frequency waves and transient secondary waves in an intermediate region. The amplitude dispersion of the primary wave crest results in a convex wave front after passing through the shoal and the secondary waves generated by the shoal diffracted in a radial manner into surrounding waters.

  • PDF

Measurement and Numerical Model for Wave Interation on Impermeable Steep Slopes (불투수성 급경사면 위의 파랑상호작용에 관한 수치모델 및 실험)

  • Kim, In-Chul;Ahn, Ik-Seong
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.44-51
    • /
    • 2008
  • The planning and design of coastal structures against wave attack is required to accurately predict wave transformation, wave run-up, and fluid. particlevelocities an a slope. On tire other hand, in tire swash and surf zones of a natural beach, where coastal erosion and accretion occur at tire land-sea boundary, hydrodynamic analysis is essential. In this study, a RBREAK2 numerical model was created based on the nonlinear shallow water equation and laboratory measurements were carried out in terms of tire free surface elevations and velocities for tire cases of regular and irregular waves on 1 : 10 and 1 : 5 impermeable slopes. The data were used to evaluate tire applicability and limitations of tire RBREAK2 numerical model. The numerical mode1 could predict tire cross-shore variation of the wave profile reasonably well, but showed more accurate results for slopes that were steeper than 1 : 10. Except near tire wave crest, tire computed depth averaged velocities could represent tire measured profile below tire trough level fairly well.

Computation of the Bow Deck Design Pressure against the Green Water Impact (Green Water 충격에 대비한 선수갑판 설계압력의 산출)

  • Kim, Yong Jig;Shin, Ki-Seok;Lee, Seung-Chul;Ha, Youngrok;Hong, Sa Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.343-351
    • /
    • 2019
  • Green water impact may sometimes cause some structure damages on ship's bow deck. Prediction of proper design pressure against the green water impact is an essential task to prevent the possible damages on bow deck. This paper presents a computational method of the bow deck's design pressure against the green water impact. Large heave and pitch motions of ship are calculated by the time domain nonlinear strip method. Green water flow and pressure on bow deck are simulated by the predictor-corrector second kind upstream finite difference method. This green water simulation method is based on the shallow water wave equations expanded for moving bottom conditions. For various kind of ships such as container ship, VLCC, oil tanker and bulk carrier, the green water design pressures on bow deck are computed and discussed. Also, the obtained results of design pressure on bow deck are compared with those of the classification society rules and discussed.