• Title/Summary/Keyword: shallow landslide

Search Result 48, Processing Time 0.03 seconds

On the Determination of Slope Stability to Landslide by Quantification(II) (수량화(數量化)(II)에 의한 산사태사면(山沙汰斜面)의 위험도(危險度) 판별(判別))

  • Kang, Wee Pyeong;Murai, Hiroshi;Omura, Hiroshi;Ma, Ho Seop
    • Journal of Korean Society of Forest Science
    • /
    • v.75 no.1
    • /
    • pp.32-37
    • /
    • 1986
  • In order to get the fundamental information that could be useful to judge the potentiality of occurrence of rapid shallow landslide in the objective slope, factors selected on Jinhae regions in Korea, where many landslides were caused by heavy rainfall of daily 465 mm and hourly 52mm in August 1979, was carried out through the multiple statistics of quantification method (II) by the electronic computer. The net system with $2{\times}2cm$ unit mesh was overlayed with the contour map of scale 1:5000. 74 meshes of landslides and 119 meshes of non-landslide were sampled out to survey the state of vegetative cover and geomorphological conditions, those were divided into 6 items arid 27 categories. As a result, main factors that would lead to landslide were shown in order of vegetation, slope type, slope position, slope, aspect and numbers of stream. Particularly, coniferous forest of 10 years old, concave slope and foot of mountain were main factors making slope instability. On the contrary, coniferous forest of 20-30 years old, deciduous forest, convex slope and summit contributed to the stable against Landslide. The boundary value between two groups of existence and none of landslides was -0.123, and its prediction was 72%. It was well predicted to divide into two groups of them.

  • PDF

Investigation of Soil Characteristics and Landslides Probability in East Island of Dok-Do (독도 동도지역의 토질특성 및 산사태가능성 조사)

  • Song, Young-Suk;Chae, Byung-Gon;Cho, Yong-Chan;Lee, Choon-Oh
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.665-671
    • /
    • 2007
  • In this study, the soil characteristics and the landslide probability are investigated in East Island of Dok-do. The distribution and depth of soil layer were investigated and the soil samples were taken from the soil layer in East Island. As the results of field investigation, the soil layer was partly distributed in specific location and the soil depth was ranged from 1cm to 50cm. Also, the soil depth was mainly ranged about 10cm in the large part of soil layer. The soils were classed as the weathered residual soils and involved many organic contents such as rotten roots and leaves. The average of water contents is 23.2%, and the average of liquid limits is 42.2%. Also, the soils is non-plastic condition. Also, the soils were mainly classed as the poor graded sand including loam contents. Meanwhile, the landslide probability was investigated through a survey of the soil layer distribution in East Island. The soil depth was very shallow in the large part of the soil layer, and the distribution area of soil layer was small. Therefore, it may predict that the landslide probability is very low due to the dissatisfaction of landslide occurrence condition.

Landslide Types and Susceptibilities Related to Geomorphic Characteristics - Yeonchon-Chulwon Area - (지형특성에 따른 산사태의 유형 및 취약성 - 연천-철원지역을 대상으로 -)

  • 김원영;이사로;김경수;채병곤
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.115-130
    • /
    • 1998
  • An analysis on landslide types and susceptibilities associated with geomorphic characteristics has been conducted with 916 landslide inventories in Yeonchon-Chulwon District, where two day's heavy rainfall was concentrated on July, 1996. The precipitation during the 2 days, which is equivalent to 0.372 of event cofficient, can cause large landslides based on Olivier's equation. Sliding materials are dominantly composed of debris mixed with rock fragments and soil derived from colluvium and residual soils. 66% of the landslides are belong to debris flow md 23% are due to sediments flow, in accordance with the classification of sliding materials. Most of landslides(> 90%) are small and shallow, less than l00m in length and about 1m in depth, and classified as transitional type. Granite is more susceptible as much as 4.7 times than metamorphic rocks and 2.7 times than volcanic rocks, probably due to higher weathering grade of granite. The highest landslide frequency is concentrated on the areas between 200 and 300m in height and on the slopes between $10-20^{\circ}$ in dgree. More than 50% of landslides occurred under these geomorphic conditions. Consequently, colluviums and residual soils distributed on the gentle slopes are most susceptible to the landslides of the area.

  • PDF

Disaster risk predicted by the Topographic Position and Landforms Analysis of Mountainous Watersheds (산지유역의 지형위치 및 지형분석을 통한 재해 위험도 예측)

  • Oh, Chae-Yeon;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • Extreme climate phenomena are occurring around the world caused by global climate change. The heavy rains exceeds the previous record of highest rainfall. In particular, as flash floods generate heavy rainfall on the mountains over a relatively a short period of time, the likelihood of landslides increases. Gangwon region is especially suffered by landslide damages, because the most of the part is mountainous, steep, and having shallow soil. Therefore, in this study, is to predict the risk of disasters by applying topographic classification techniques and landslide risk prediction techniques to mountain watersheds. Classify the hazardous area by calculating the topographic position index (TPI) as a topographic classification technique. The SINMAP method, one of the earth rock predictors, was used to predict possible areas of a landslide. Using the SINMAP method, we predicted the area where the mountainous disaster can occur. As a result, the topographic classification technique classified more than 63% of the total watershed into open slope and upper slope. In the SINMAP analysis, about 58% of the total watershed was analyzed as a hazard area. Due to recent developments, measures to reduce mountain disasters are urgently needed. Stability measures should be established for hazard zone.

Underground temperature survey for the study of shallow groundwater flow system

  • Okuyama Takehiko;Kuroda Seiichiro;Nakazato Hiroomi;Natsuka Isamu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.690-694
    • /
    • 2003
  • Groundwater preferentially flows through sediment layers with high permeability such as colluvium. Its flow paths are called groundwater vein streams. An underground temperature survey is a method to locate vein streams by underground temperature anomalies associated with flowing groundwater. A groundwater flow system near an irrigation reservoir located in the upper part of a landslide block was surveyed with this method. After a geomembrane lining was installed in the reservoir, the total cross-sectional area of the vein streams in the aquifer decreased to as little as 0.35 times that before installation of the liner. A change in groundwater quality also indicated that the mixing of groundwater with leaked water from the reservoir stopped after installation of the lining.

  • PDF

An analysis of rainfall infiltration characteristics on a natural slope from in-situ monitoring data (현장 계측을 통한 자연사면에서의 강우 침투 특성 분석)

  • Kim, Woong-Ku;Chang, Pyoung-Wuck;Cha, Kyung-Seob
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.375-380
    • /
    • 2005
  • In Korea, most landslides are occurred during the rainy season from June to September and have a shallow failure plane parallel to the slope. For these types of rainfall-induced failures, the most important factors triggering slope unstability is not the increase of pore water pressure but the decrease of the matric suction of unsaturated soils by rainfall infiltration. So it is essential to landslide hazard assessment that defines the characteristics of infiltration in natural slopes. In this study, field measurements have been carried out in order to monitor in-situ volumetric water contents and ground water table, at several depths and locations on a natural slope. The results show that rainfall infiltration is correlated with antecedent water contents, rainfall intensity and total rainfall. The ground water table was varied sensitively by every rainfall event.

  • PDF

Saturation Depth and Slope Stability considering Unsteady Rainfall in Natural Slope (비정상강우를 적용한 자연사면에서의 포화깊이 산정 및 사면안정성 평가)

  • Kim, Sang-Hoon;Kim, Seong-Pil;Son, Young-Hwan;Heo, Joon;Chang, Pyoung-Wuck
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.1
    • /
    • pp.57-65
    • /
    • 2007
  • In Korea, most landslides occurr during the rainy season and have shallow failure planes parallel to the slope. For these types of rainfall-induced failures, the most important factor triggering slope unstability is decrease in the matric suction of unsaturated soils with increasing saturation depth by rainfall infiltration. For this reason, estimation of cumulative infiltration has a significance. In this study, infiltration rate and cumulative infiltration are estimated by using both Mein & Larson model based on Green-Ampt infiltration model and using modified Mein & Larson model to which unsteady rainfall is applied. According to the results, the modified model is more reasonable than Mein & Larson method itself in estimation of infiltration rate and saturation depth because of considering real pending condition.

Studies on the Causal Factors of Landslides on Limestone Soils in Pyeongchangkun (산사태(山沙汰) 발생요인(發生要因)에 관한 연구(硏究) -평창군(平昌郡) 석회암지대(石灰岩地帶)를 중심(中心)으로-)

  • Lee, Soo-Wook
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.2
    • /
    • pp.125-133
    • /
    • 1979
  • The characteristics of landslides occurred in August 5, 1979 in pyeongchangkun were surveyed and indentified as follows. 1. Deep limestone regions. Distinct differences in soil texture between A1 and B horizon could be observed on soil profile, which is attributed to the clay illuviation. The clay illuvial horizon is supposed to be an important cause of large scale mudflows on middle slopes by the lubricant action of ground water flowing between top soil and subsoil. 2. Shallow limestone regions. Very shallow top soils (less than 50cm) laid on tilted bedrock stratification provide a proper condition of mass soil movement if the top soil is saturated and ground water flows between top soil and bedrock when concentrated heavy rainfalls shower. 3. Granite regions. Weathering granitic bedrock produces very coarse textured top soils which are very cohesionless and have many pores. Therefore, the soil has high infiltration ratio and is easy to be saturated by water and to be detached from the bedrock. The landslides abrase very severely both sides of gully with high potential energy when they flow down. The following methods for landslide prevention can be recommended. 1. The original parts of landslides on top of the gully must be treated by intensive planting of deep rooting species and check dams. 2. Clear-cutting and crop planting on steep slope (more than 25 degrees) should be controlled and prohibited. 3. Establishment of landslide prevention forest should be practised on proper site.

  • PDF

Water-induced changes in mechanical parameters of soil-rock mixture and their effect on talus slope stability

  • Xing, Haofeng;Liu, Liangliang;Luo, Yong
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.353-362
    • /
    • 2019
  • Soil-rock mixture (S-RM) is an inhomogeneous geomaterial that is widely encountered in nature. The mechanical and physical properties of S-RM are important factors contributing towards different deformation characteristics and unstable modes of the talus slope. In this paper, the equivalent substitution method was employed for the preparation of S-RM test samples, and large-scale triaxial laboratory tests were conducted to investigate their mechanical parameters by varying the water content and confining pressure. Additionally, a simplified geological model based on the finite element method was established to compare the stability of talus slopes with different strength parameters and in different excavation and support processes. The results showed that the S-RM samples exhibit slight strain softening and strain hardening under low and high water content, respectively. The water content of S-RM also had an effect on decreasing strength parameters, with the decrease in magnitude of the cohesive force and internal friction angle being mainly influenced by the low and high water content, respectively. The stability of talus slope decreased with a decrease in the cohesion force and internal friction angle, thereby creating a new shallow slip surface. Since the excavation of toe of the slope for road construction can easily cause a landslide, anti-slide piles can be used to effectively improve the slope stability, especially for shallow excavations. But the efficacy of anti-slide piles gradually decreases with increasing water content. This paper can act as a reference for the selection of strength parameters of S-RM and provide an analysis of the instability of the talus slope.

Comparison of Effective Soil Depth Classification Methods Using Topographic Information (지형정보를 이용한 유효토심 분류방법비교)

  • Byung-Soo Kim;Ju-Sung Choi;Ja-Kyung Lee;Na-Young Jung;Tae-Hyung Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.1-12
    • /
    • 2023
  • Research on the causes of landslides and prediction of vulnerable areas is being conducted globally. This study aims to predict the effective soil depth, a critical element in analyzing and forecasting landslide disasters, using topographic information. Topographic data from various institutions were collected and assigned as attribute information to a 100 m × 100 m grid, which was then reduced through data grading. The study predicted effective soil depth for two cases: three depths (shallow, normal, deep) and five depths (very shallow, shallow, normal, deep, very deep). Three classification models, including K-Nearest Neighbor, Random Forest, and Deep Artificial Neural Network, were used, and their performance was evaluated by calculating accuracy, precision, recall, and F1-score. Results showed that the performance was in the high 50% to early 70% range, with the accuracy of the three classification criteria being about 5% higher than the five criteria. Although the grading criteria and classification model's performance presented in this study are still insufficient, the application of the classification model is possible in predicting the effective soil depth. This study suggests the possibility of predicting more reliable values than the current effective soil depth, which assumes a large area uniformly.