• Title/Summary/Keyword: shallow depth

Search Result 1,034, Processing Time 0.032 seconds

Case Study on the Tunnel Collapse at the Shallow Depth (NATM터널 저토피 구간에서의 막장붕락 사례연구)

  • Baek Ki-Hyun;Roh Jong-Ryun;Kim Yong-Il;Cho Sang-Kook;Hwang Nag-Youn
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.102-110
    • /
    • 2005
  • ○ ○ tunnel that is located at Iksan - Jangsu freeway ○ ○, has collapsed during construction at the valley with shallow depth. Although, the site investigations, such as TSP, drilling exploration and so of indicated the presence of discontinuities in this section. The RMR was upgraded and the construction were carried out because that not only actual rock qualities were relatively good during construction but also the tunnel foe was stabilized. However, the tunnel was collapsed at the same time blasting of full face, and surface and underground water was infiltrated due to the settlement of the upper part of the tunnel face. To restore the collapsed section, 3-d tunnel stability analysis was performed and suitable reinforcement methods were chosen. The cavity of the upper tunnel face was stabilized by means of UAM and ALC injection. And the settlement was restored using L.W grouting method.

An Experimental Study on the Failure Mechanism of Foundation with Depth (근입깊이에 따른 기초지반의 파괴형태에 관한 실험적 연구)

  • Bong, Hyoun Gyu;Lee, Sang Duk;Koo, Ja Kap;Jeon, Mong Gag
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.923-932
    • /
    • 1994
  • The studies on the bearing capacity of shallow and deep foundations have been made in various fields and formulas for various failure mechanisms have been presented. But, for these models, the method of classification with foundation depth has been obscure and bearing capacity factors have not been uniformly applied. An experiment was performed, in plane strain conditions, with ground model made of carbon rods. The failure mechanism of foundation and ultimate bearing capacity with foundation depth were observed. Based on experimental results the classification between shallow and deep foundations by failure shape was tried. Various present failure mechanisms of foundation were verified through the experiment.

  • PDF

Comparison of Local Scour around Pipeline Caused by Waves and Steady Currents (파랑 및 정상흐름에 의한 해저관로 주변의 국부세굴 특성 비교)

  • Kim, Kyoung-Ho;Oh, Hyoun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.21-28
    • /
    • 2011
  • The primary purpose of the present study was to investigate the mechanism causing scour around a pipeline placed on the seabed in a shallow water zone. Such submarine pipelines are usually exposed to currents and waves. The present experiments made estimates for each different flow type. The scour width and depth in the equilibrium scour phase were analyzed by non-dimensional parameters. The experiment in this study considered various parameters: pipe diameters, wave periods, wave heights, and current velocities. Using the experimental results, the correlations of scour width, scour depth, and main non-dimensional parameters such as the Fr number and KC number were analyzed. In the case of steady currents, the scour hole was closely related to the bottom velocity, while the scour hole in waves showed a relatively low correlation to the bottom velocity because when exposed to waves the scour hole was restricted according to the movement distance of the water particles during a wave period. However, the scour width under a steady current was not limited because vortex shedding was well developed from having enough time and distance.

Numerical Study of a Novel Bi-focal Metallic Fresnel Zone Plate Having Shallow Depth-of-field Characteristics

  • Kim, Jinseob;Kim, Juhwan;Na, Jeongkyun;Jeong, Yoonchan
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.147-152
    • /
    • 2018
  • We propose a novel bi-focal metallic Fresnel zone plate (MFZP) with shallow depth-of-field (DOF) characteristics. We design the specific annular slit patterns, exploiting the phase-selection-rule method along with the particle swarm optimization algorithm, which we have recently proposed. We numerically investigate the novel characteristics of the bi-focal MFZP in comparison with those of another bi-focal MFZP having equivalent functionality but designed by the conventional multi-zone method. We verify that whilst both bi-focal MFZPs can produce dual focal spots at $15{\mu}m$ and $25{\mu}m$ away from the MFZP plane, the former exhibits characteristics superior to those of the latter from the viewpoint of axial resolution, including the axial side lobe suppression and axial DOF shallowness. We expect the proposed bi-focal MFZP can readily be fabricated with electron-beam evaporation and focused-ion-beam processes and further be exploited for various applications, such as laser micro-machining, optical trapping, biochemical sensing, confocal sensing, etc.

Formation of p$^{+}$-n ultra shallow junction with Co/Ti bilayer silicide contact (Co/Ti 이중막 실리사이드 접촉을 갖는 p$^{+}$-n 극저접합의 형성)

  • 장지근;엄우용;신철상;장호정
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.5
    • /
    • pp.87-92
    • /
    • 1998
  • Ultr shallow p$^{+}$-n junction with Co/Ti bilayer silicidde contact was formed by ion implantation of BF$_{2}$ [energy : (30, 50)keV, dose:($5{\times}10^{14}$, $5{\times}10^{15}$/$\textrm{cm}^2$] onto the n-well Si(100) region and by RTA-silicidation and post annealing of the evaporated Co(120.angs., 170.angs.)/Ti(40~50.angs.) double layer. The sheet resistance of the silicided p$^{+}$ region of the p$^{+}$-n junction formed by BF2 implantation with energy of 30keV and dose of $5{\times}10^{15}$/$\textrm{cm}^2$ and Co/Ti thickness of $120{\AA}$/(40~$50{\AA}$) was about $8{\Omega}$/${\box}$. The junction depth including silicide thickness of about $500{\AA}$ was 0.14${\mu}$. The fabricated p$^{+}$ -n ultra shallow junction depth including silicide thickness of about $500{\AA}$ was 0.14${\mu}$. The fabricated p$^{+}$-n ultra shallow junction with Co/Ti bilayer silicide contact did not show any agglomeration or variation of sheet resistance value after post annealing at $850^{\circ}C$ for 30 minutes. The boron concentration at the epitaxial CoSi$_{2}$/Si interface of the fabricated junction was about 6*10$6{\times}10^{19}$ / $\textrm{cm}^2$./TEX>.

  • PDF

Acoustic Signal Processing for ADCP using Zoom FFT Method to increase Frequency Resolution (주파수 해상도 증가를 위해 Zoom FFT 기법을 사용한 ADCP 음향신호처리)

  • Han, Jin-Hyun;Shim, Tae-Bo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.229-234
    • /
    • 2010
  • This paper proposed the acoustic signal processing techniques, which are applicable even in the shallow river, and will enhance the frequency resolution of the ADCP (Acoustic Doppler Current profiler). ADCP is a device that measures the velocity of a moving fluid. ADCP, in general, can be operated at ~300 Khz of center frequency due to no depth limit in the sea. However, it can hardly be used due to water depth of 30cm or shallower during the dry season in the river. Therefore, existing signal processing methods are not suitable to use in the shallow river. We are proposing an alternative acoustic signal processing method using Zoom FFT. Simulation results show that errors are reduced ${\pm}62\;cm/s$ in theory, and ${\pm}93\;cm/s$ in the experiment. The existing algorithm could not estimate the current speed at the shallow river below 30 cm, but proposed algorithm estimated the current speed that was faster than 20 cm/s at the shallow river below 30 cm.

Finite-Volume Model for Shallow-Water Flow over Uneven Bottom (고르지 않은 바닥을 지나는 천수 흐름에 대한 유한체적 모형)

  • Hwang, Seung-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.2
    • /
    • pp.139-153
    • /
    • 2013
  • For analyzing shallow-water flows over the uneven bottom, the HLLL scheme and the divergence form for bed slope source term (DFB) technique, respectively were applied to the flux gradient and the bottom gradient source terms in a finite-volume model for the shallow water equations. And also the model incorporated the volume/free-surface relationship (VFR) to consider the partially submerged cells (PSC). It was identified that a simpler version of the weighted surface-depth gradient method in the MUSCL was equivalent to the original one in the accuracy for 1D steady flows. It was verified that the flux gradient term and the bottom gradient source term were well-balanced exactly by the VFR for the 1D PSC. The VFR for the triangular PSC settled the problem which the governing equations were not well-balanced by the DFB technique for the 2D PSC. There were good agreements in simulations and experiments for 2D dam-break flows over a triangular sill and a round bump. In addition, the partial dam-break flow was successfully simulated for flooding of roughnesses in an irregular bottom as well as a sloping one. Therefore, this model is expected to be applied to the real river with uneven topography.

Probabilistic Stability Analysis of Unsaturated Soil Slope under Rainfall Infiltration (강우침투에 대한 불포화 토사사면의 확률론적 안정해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.5
    • /
    • pp.37-51
    • /
    • 2018
  • The slope failure due to the rainfall infiltration occurs frequently in Korea, since the depth of the weathered residual soil layer is shallow in mountainous region. Depth of the failure surface is shallow and tends to pass near the interface between impermeable bedrock and soil layer. Soil parameters that have a significant impact on the instability of unsaturated slopes due to rainfall infiltration inevitably include large uncertainties. Therefore, this study proposes a probabilistic analysis procedure by Monte Carlo Simulation which considers the hydraulic characteristics and strength characteristics of soil as random variables in order to predict slope failure due to rainfall infiltration. The Green-Ampt infiltration model was modified to reflect the boundary conditions on the slope surface according to the rainfall intensity and the boundary condition of the shallow impermeable bedrock was introduced to predict the stability of unsaturated soil slope with shallow bedrock under constant rainfall intensity. The results of infiltration analysis were used as inputs of infinite slope analysis to calculate the safety factor. The proposed analysis method can be used to calculate the time-dependent failure probability of soil slope due to rainfall infiltration.

A Study of Performance Characteristics for Active Sonar in Korean Shallow Seawater Temperature Structures (한국 천해 수온구조에서의 능동소나 성능 특성 연구)

  • Kim, Won-Ki;Bae, Ho Seuk;Son, Su-Uk;Hahn, Jooyeong;Park, Joung-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.482-491
    • /
    • 2021
  • It is obvious that understanding the effects of shallow water environment of Korea is very important to guarantee the optimal performance of active sonar such as monostatic and bistatic sonar. For this reason, in this paper, we analyzed the detection performance characteristics for various depth deployments of sonar in summer, winter and water temperature inversion environments, which environments are frequently observed in shallow water of Korea such as the Yellow sea. To analyze only effects of water temperature structures on target detection performance, we applied range independent conditions for bottom, sea surface and water temperature characteristics. To understand the characteristics of detection performance, we conducted transmission loss and signal excess modeling. From the results, we were able to confirm the characteristics of detection performance of active sonar. In addition, we verified that operation depth of transmitter and receiver affects the detection performance. Especially in the water temperature inversion environment, it was confirmed that the shadow zone could be minimized and the detection range could be increased through bistatic operation.

Effects of Depth-varying Compressional Wave Attenuation on Sound Propagation on a Sandy Bottom in Shallow Water (천해 사질 퇴적층에서 종파감쇠계수의 깊이별 변화가 음파손실에 미치는 영향)

  • Na, Young-Nam;Shim, Tae-Bo;Jurng, Moon-Sub;Choi, Jin-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2E
    • /
    • pp.76-82
    • /
    • 1994
  • The characteristics of bottom sediment may be able to vary within a few meters of depth in shallow water. Since bottom attenuation coefficient as well as sound velocity in the bottom layer is determined by the composition and characteristics of sediment itself, it is reasonable to assume that the bottom attenuation coefficient is accordingly variable with depth. In this study, we use a parabolic equation scheme to examine the effects of depth-varying compressional wave attenuation on acoustic wave propagation in the low frequency ranging from 100 to 805 Hz. The sea floor under consideration is sandy bottom where the water and the sediment depths are 40 meters and 10 meters, respectively. Depending on the assumption that attenuation coefficient is constant or depth-varying, the propagation loss difference is as large as 10dB within 15 km. The predicted propagation loss is very much comparable to the measured one when we employ a depth-varying attenuation coefficient.

  • PDF