• Title/Summary/Keyword: shallow depth

Search Result 1,034, Processing Time 0.038 seconds

Numerical Approach to Investigate the Effect of Mud Pressure on the Borehole Stability during Horizontal Directional Drilling (수평굴착 시 점토압력이 굴착공의 안정에 미치는 영향에 관한 수치해석적 연구)

  • Kang, Jae Mo;Lee, Janggeun;Bae, Kyu-Jin;Moon, Changyeul;Ban, Hoki
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.12
    • /
    • pp.71-76
    • /
    • 2015
  • Recently, people are increasingly interested in horizontal directional drilling (HDD) to construct oil and gas pipeline and utility pipeline in the urban area as one of trenchless methods. One of major issues during the HDD is the collapse of borehole, which may be the potential causes of ground collapse. This study investigated the effect of mud pressure on the borehole stability, using finite element analysis. Since the borehole is being drilled with a certain angle, three dimensional analysis should be performed. The borehole stability was examined by applying two different types of mud pressures, i.e., uniform and non-uniform, to the exterior surface of borehole. The results show that the high mud pressure at the beginning of drilling, i.e., at shallow depth, causes the borehole collapse, whereas the borehole was stable even at high mud pressure as the drilling depth increases. It can be said that the determination of maximum mud pressure is strongly related to the drilling depth.

Computation of Irrigation Interval and Amount as affected by Growing Substrate and Soil Depth Planted with Zoysia japonica in Green Roof during a Dry Summer (여름철 무강우 시 들잔디 옥상녹화 식재지반에 따른 관수주기 및 관수량 산정)

  • Ju, Jin-Hee;Bae, Gyu-Tae;Kim, Won-Tae;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.21 no.3
    • /
    • pp.289-296
    • /
    • 2012
  • The purpose of this study was to identify the irrigation intervals and the amount of suitable growing substrate needed to achieve the desired shallow-extensive green roof system during a dry summer in Korea. In terms of treatment, three types (SL, $P_6P_2L_2$, $P_4P_4L_2$) with varying soil mixture ratios and two types (15 cm, 25 cm) with varying soil depths were created. The results have been analyzed after measuring growth and soil water contents. The difference of growth by treatment was significant in terms of green coverage, height, leaf width and photosynthesis. In measurement of chlorophyll content, no difference was detected when measured against soil depth. According to the growth measurement of Zoysia japonica with respect to differing soil mixture ratios in the 15 cm-deep treatment, a statistical difference was detected at the 0.05 significance level in photosynthesis. In case of green coverage, height, chlorophyll content and leaf width, no statistical significance was observed. In case of the 25 cm-deep treatment, a statistical significance was observed in height and photosynthesis. In terms of green coverage, chlorophyll content and leaf width, no statistical significance was detected. In comparisons of soil moisture tension and soil water contents, the irrigation interval and amount were 8 days and 14.9 L in the SL (15 cm) treatment, respectively. The irrigation interval showed for 10 days a 1.3-fold increase, and the irrigation amount was 27.4 L 1.8-fold more than SL (25 cm), respectively. For $P_6P_2L_2$ (15 cm) treatment, the irrigation interval and amount were 12 days and 20.7 L, respectively. However, an irrigation interval under $P_6P_2L_2$ (25 cm) was for 15 days 1.3 times longer than $P_6P_2L_2$ (15 cm), and an irrigation amount of 40 L was 1.9 times more than that under $P_6P_2L_2$ (15 cm). In $P_4P_4L_2$ (15 cm) treatment, it was indicated that the irrigation interval was 15 days, and the irrigation amount was 19.2 L. It was not needed to irrigate for 16 days under $P_4P_4L_2$ (25 cm) treatment during the dry summer and the longest no-rain periods. The irrigation interval and amount under $P_4P_4L_2$ were 1.8-fold and 1.3-fold, respectively, more than SL treatment as affected by soil mixture ratio. Comparatively $P_4P_4L_2$ had more 1.3-fold and 0.9-fold in irrigation interval and amount more than $P_6P_2L_2$. Therefore, it can be noted that different soil depth and soil mixture ratios had a significant effect on the irrigation interval and amount.

Characteristics of the Regional Rock Stress Field at Shallow Depth in the Kyungsang Basin with In-situ Rock Stress Measurement (현장 측정을 통한 경상분지의 천부 초기응력장 특성에 관한 연구)

  • Bae, Seong-Ho;Jeon, Seok-Won;Kim, Jae-Min;Kim, Jang-Soon
    • Tunnel and Underground Space
    • /
    • v.18 no.2
    • /
    • pp.149-161
    • /
    • 2008
  • It is nearly impossible to estimate the exact state of the current rock stress of interest site by the theoretical and physical approaches except some specific geological situations. This means that in-situ stress measurement is a unique way to obtain reliable information on rock stress especially for civil and mining engineering related problems. Since late in the 90's, in-situ rock stress tests have been widely conducted to provide the quantitative information on the stress state of engineering site at the design stage of an underground rock structure in the Kyungsang Basin, Korea. The study area is the near surface regions at the depth less than 300 m in the Kyungsang Basin. It includes Yeosoo to the west and Busan to the east. Totally, 270 in-situ stress measurements were conducted in the surface test boreholes at the depth from 14 m to 300 m by hydraulic fracturing method. In this paper, based on the measurement data set, the overall characteristics of the current in-situ rock stress fields in the study area are briefly described. And also the investigation results on the difference between the stress distributions for the granitoid and the andesitic rock region are also introduced. Finally, the distributions of the regional horizontal stress directions in Busan and the Yangsan faults area are shown.

Correction Algorithm of Errors by Seagrasses in Coastal Bathymetry Surveying Using Drone and HD Camera (드론과 HD 카메라를 이용한 수심측량시 잘피에 의한 오차제거 알고리즘)

  • Kim, Gyeongyeop;Choi, Gunhwan;Ahn, Kyungmo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.553-560
    • /
    • 2020
  • This paper presents an algorithm for identifying and eliminating errors by seagrasses in coastal bathymetry surveying using drone and HD camera. Survey errors due to seagrasses were identified, segmentated and eliminated using a L∗a∗b color space model. Bathymetry survey using a drone and HD camera has many advantages over conventional survey methods such as ship-board acoustic sounder or manual level survey which are time consuming and expensive. However, errors caused by sea bed reflectance due to seagrasses habitat hamper the development of new surveying tool. Seagrasses are the flowering plants which start to grow in November and flourish to maximum density until April in Korea. We developed a new algorithm for identifying seagrasses habitat locations and eliminating errors due to seagrasses to get the accurate depth survey data. We tested our algorithm at Wolpo beach. Bathymetry survey data which were obtained using a drone with HD camera and calibrated to eliminate errors due to seagrasses, were compared with depth survey data obtained using ship-board multi-beam acoustic sounder. The abnormal bathymetry data which are defined as the excess of 1.5 times of a standard deviation of random errors, are composed of 8.6% of the test site of area of 200 m by 300 m. By applying the developed algorithm, 92% of abnnormal bathymetry data were successfully eliminated and 33% of RMS errors were reduced.

Aeromagnetic Characteristics of the Samryangjin Caldera Area (삼량진 칼데라 지역의 항공자력특성 연구)

  • Koo Sung-Bon;Lee Tai-Sup;Park Yeong-Sue
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.2
    • /
    • pp.101-109
    • /
    • 1998
  • Using airborne magnetic data, magnetic characteristics were studied at the Samryangjin caldera area developed in the volcanics of the Yuchon sub-basin, the south eastern part of the Gyeongsang basin. Residual magnetics, reduction to the pole, horizontal derivative, and vertical derivative maps are prepared. Using these maps, the magnetic lithofaces are zoned and the geological structures such as caldera and faults were qualitatively interpreted. In addition, the two quantitative interpretations were performed. Firstly, the forward modelling were done to the 14.5 line km crossing the caldera area to the northeast-southwest direction. Applying the 3-D Euler deconvolution method to the whole study area, the depth extent and the characteristics of the magnetic anomalous bodies were studied. According to the results, the magnetic lithofaces of the area are zoned by 4 units. In general, these are well matched with the geological distributions. But the biotite granites intruded in the northern boundary of the Samryangjin caldera show the high magnetic intensity, while the biotite granites of the other areas show the low magnetic intensity and the different magnetic lithofaces. Thus, we interpreted that the biotite granites are closely related with the volcanic activity of the Samryngjin caldera, and are intruded in the fracture zones developed along the caldera rim. The Samryangjin caldera and fault structures of the area can be easily recognized by the distinct magnetic structures from the various magnetic anomaly maps. Also the topographic characteristics well reflect these structures. The results of the forward modelling show that the magnetic basement depth of the Gyeongsang sedimentary basin is on the average about 6 km and in maximum 10 km. And the depth becomes shallower toward the caldera boundary due to the shallow intrusion of the volcanics. The results of the 3-D Euler method also show the caldera and fault structures. And the relatively shallow magnetic anomalous bodies which are related with the volcanics are generally developed to the east-west and northeast directions, while the deep magnetic anomalous bodies to the northwest direction.

  • PDF

A Study of Habitat Environment Mapping Using Detailed Bathymetry and Seafloor Data in the Southern Shore of the East Sea(Ilsan Beach, Ulsan) (정밀 해저지형 및 해저면 자료를 활용한 동해 남부 연안(울산 일산해변) 생태계 서식지 환경 맵핑 연구)

  • Choi, SoonYoung;Kim, ChangHwan;Kim, WonHyuck;Rho, HyunSoo;Park, ChanHong
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.717-731
    • /
    • 2021
  • We analyzed the characteristics of the habitat environment for the Seonam study area in Ulsan, the southern shore of the East Sea using bathymetry and seafloor environment data. The depth of the study area ranges from about 0 m to 23 m. In the west of the study area, the water depth is shallow with a gentle slope, and the water depth becomes deeper with a steep slope in the east. Due to the right-lateral strike-slip faults located in the continental margin of the East Sea, the fracture surfaces of the seabed rocks are mainly in the N-S direction, which is similar to the direction of the strike faults. Three seafloor types (conglomeratic-grained sandy, coasre-graiend sandy, fine-grained sandy) and rocky bottom area have been classified according to the analyses of the bathymerty, seafloor image, and surface sediment data. The rocky bottom areas are mainly distributed around Seaoam and in the northern and southern coastal area. But the intermediate zone between Seonam and coastal area has no rocky bottom. This intermediate area is expected to have active sedimentation as seawater way. The sandy sediments are widely distributed throughout the study area. Underwater images and UAV images show that Cnidarians, Brachiopods, Mollusks are mostly dominant in the shallow habitat and various Nacellidae, Mytilidae live on the intertidal zone around Seonam. Annelida and Arthropod are dominant in the sandy sediments. The distribution of marine organism in the study area might be greatly influenced by the seafloor type, the composition and particle size distribution of the seafloor sediments. The analysis of habitat environment mapping with bathymetry, seafloor data and underwater images is supposed to contribute to the study of the structure and function of marine ecosystem.

Distribution and Origin of the Mid-depth Cold Water Pools Observed in the Jeju Strait in the Summer of 2019 (2019년 여름철 제주해협에서 관측된 중층 저온수의 분포와 기원)

  • DOHYEOP YOO;JONG-KYU KIM;BYOUNG-JU CHOI
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.1
    • /
    • pp.19-40
    • /
    • 2023
  • To investigate the role of water masses in the Jeju Strait in summer on the shallow coastal region and the characteristics of water properties in the strait, temperature and salinity were observed across the Jeju Strait in June, July, and August 2019. The cold water pool, whose temperature is lower than 15℃, was observed in the mid-depths of the central Jeju Strait and on the northern bottom slope of the strait. The cold water pools have the lowest temperature in the strait. To identify water masses comprising the cold water pool in the Jeju Strait, mixing ratios of water masses were calculated. The mid-depth cold water pool of the Jeju Strait consists of 54% of the Kuroshio Subsurface Water (KSSW) and 33% of the Yellow Sea Bottom Cold Water (YSBCW). Although the cold water pool is dominantly affected by the KSSW, the YSBCW plays a major role to make the cold water pool maintain the lowest temperature in the Jeju Strait. To find origin of the cold water pool, temperature and salinity data from the Yellow Sea, East China Sea, and Korea Strait in the summer of 2019 were analyzed. The cold water pool was generated along the thermohaline frontal zone between the KSSW and YSBCW in the East China Sea where intrusion and mixing of water masses are active below the seasonal thermocline. The cold water in the thermohaline frontal zone had similar mixing ratio to the cold water pool in the Jeju Strait and it advected toward the Korea Strait and shallow coastal region off the south coast of Korea. Intrusion of the mid-depth cold water pool made temperature inversion in the Jeju Strait and affected sea surface temperature variations at the coastal region off the south coast of Korea.

Effect of Transplanting Depths on Growth of Transplanted Rice by Dithiopyr (Dithiopyr 처리(處理)가 수도(水稻) 생육(生育)에 미치는 이앙(移秧) 심도(深度)의 영향(影響))

  • Ryang, H.S.;Han, K.W.;Moon, Y.H.;Choi, Y.C.
    • Korean Journal of Weed Science
    • /
    • v.11 no.3
    • /
    • pp.174-177
    • /
    • 1991
  • This study was conducted to determine the influence of dithiopyr on growth of transplanted rice with different transplanting depths and the amount of $^{14}C$-dithiopyr adsorpted in the root and shoot of rice plants under paddy soil conditions. The growth rate of transplanted rice was lower in 0 and 0.25cm of transplanting depths with exposed basal stem than in 1 and 2cm of the depths in control plot. In the growth of transplanted rice treated with dithiopyr, plant hight and dry weight were significantly inhibited in 0 and 0.25cm depth plots but not affected.in 0.5, 1, 2 and 4cm depth plots, and roop length were influenced in 0, 0.25 and 4cm depth plots but not in 0.5, 1 and 2cm depth plots. The amount of ratioactivity in shoot and root of rice plants as affected by $^{14}C$-dithiopyr were the highest in 0 and 0.25cm depth plots and decreased in over 0.5cm depth plots. However the extent in amount of distributed radioactivity in the plants among the different transplanting depths was narrow gradually with the growth of plants. Therefore, injury of transplanted rice by dithiopyr is little in over 0.5cm transplanting depth with burried basal stem and the inhibition on rice plants with extreme shallow transplanting such as 0 and 0.25cm depths should be due to more adsorption of dithiopyr.

  • PDF

The Polychaete Assemblages on the Continental Shelf off the Southeastern Coast of Korea (한국(韓國) 동남해역(東南海域)의 대륙붕(大陸棚)에 분포(分布)하는 다모류군집(多毛類群集))

  • Choi, Jin Woo;Koh, Chul Hwan
    • 한국해양학회지
    • /
    • v.23 no.4
    • /
    • pp.169-183
    • /
    • 1989
  • Polychaete assemblages and their responses to habitat conditions were investigated in the southeastern continental shelf of Korea. The result of cluster analysis revealed that the study area could be divided into two regions, one including the shallow coastal region and the other the offshore region. The shallow coastal region sustained 4 polychaete assemblages: Nothria holobranchiata assemblage in the most northern part of fine sediments off Pohang, Magelona-Maldane assemblage off Gampo, Ophelina acuminata assemblage in the middle coastal area off Ulsan, Nothria conchylega assemblage in the south part off Pusan. These coastal polychaete assemblages contained less than 10 species per station and showed very low species diversity (H' = 1.22-1.52). The offshore also contained 4 assemblages: Terebellides-Aglaophamus assemblage in the northern and deep area of very fine sediments, Myriochele oculata and Spiophanes kroyeri assemblages in the central area of sandy bottoms, and Ninoe palmata assemblage in the southern offshore of sandy bottom. The offshore assemblages showed rather more species and higher diversity than coastal assemblages (H' = 1.90-2.26). The offshore region consisting of sandy sediment showed very low population densities. Some dominant species showed specific preference to sediment types and this phenomenon could be detected through their feeding modes. Depth or bottom temperature seems to be related to the distribution of most dominant worms. Thus the polychaete assemblages of the study area are found to be under the control of both a gradient of sedimentary properties and that of bottom temperature.

  • PDF

Inverse Estimation of Geoacoustic Parameters in Shallow Water Using tight Bulb Sound Source (천해환경에서 전구음원을 이용한 지음향인자의 역추정)

  • 한주영;이성욱;나정열;김성일
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.8-16
    • /
    • 2004
  • An inversion method is presented for the determination of the compressional wave speed, compressional wave attenuation, thickness of the sediment layer and density as a function of depth for a horizontally stratified ocean bottom. An experiment for estimating those properties was conducted in the shallow water of South Sea in Korea. In the experiment, a light bulb implosion and the propagating sound were measured using a VLA (vertical line array). As a method for estimating the geoacoustic properties, a coherent broadband matched field processing combined with Genetic Algorithm was employed. When a time-dependent signal is very short, the Fourier transform results are not accurate, since the frequency components are not locatable in time and the windowed Fourier transform is limited by the length of the window. However, it is possible to do this using the wavelet transform a transform that yields a time-frequency representation of a signal. In this study, this transform is used to identify and extract the acoustic components from multipath time series. The inversion is formulated as an optimization problem which maximizes the cost function defined as a normalized correlation between the measured and modeled signals in the wavelet transform coefficient vector. The experiments and procedures for deploying the light bulbs and the coherent broadband inversion method are described, and the estimated geoacoustic profile in the vicinity of the VLA site is presented.