• Title/Summary/Keyword: shallow depth

Search Result 1,034, Processing Time 0.023 seconds

An Analytical Solution of Flow and Progressive Wave-Induced Residual Pore Water Pressure in Seabed (흐름과 진행파에 의한 해저지반 내 잔류간극수압의 해석해)

  • Lee, Kwang-Ho;Kim, Dong-Wook;Kang, Gi-Chun;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.7
    • /
    • pp.13-28
    • /
    • 2015
  • This study extended the Lee et al.'s (2015a) solution which improved the existing analytical solution for prediction of the residual pore water pressure into progressive wave and flow coexisting field. At this time, the variation of incident wave period and wave length should be incorporated to Lee et al.'s (2015a) analytical solution, which does not consider flow. For the case of infinite thickness, the new analytical solution using Fourier series was compared to the analytical solution using Laplace transformation proposed by Jeng and Seymour (2007). It was verified that the new solution was identical to the Jeng and Seymour's solution. After verification of the new analytical solution, the residual pore water pressure head was examined closely under various given values of flow velocity's magnitude, direction, incident wave's period and seabed thickness. In each proposed analytical solution, asymptotic approach to shallow depth with the changes in the soil thickness within finite soil thickness was found possible, but not to infinite depth. It is also identified that there exists a discrepancy case between the results obtained from the finite and the infinite seabed thicknesses even on the same soil depth.

Influence of Soil Bulk Density on Growth and Root Development of Populus alba × P. glandulosa (토양(土壤)의 물리적(物理的) 조건(條件)이 은수원사시나무(Populus alba × P. glandulosa)의 생장(生長) 및 근계발달(根系發達)에 미치는 영향(影響) - 용적중(容積重)을 중심(中心)으로 -)

  • Min, Ell Sik;Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.66 no.1
    • /
    • pp.45-53
    • /
    • 1984
  • This experiment has been made to find out the influence of soil bulk density on growth and root development of Populus alba ${\times}$ P. glandulosa in Buyeo-kun, Chungnam. Bulk density and porosity significantly change according to slope position and soil depth and have a significant effect on tree height, DBH, biomass, and the distribution of root development. The results extracted from the experiments are as follows; 1) Bulk density in average changes from $1.17g/cm^3$ (1.05 ~ 1.40) in lower slope position to $1.43g/cm^3$ (1.36 ~ 1.60) in upper slope position, and porosity from 52.65% (55.05 ~ 45.50) in lower slope position to 41.20% (43.81 ~ 37.21) in upper slope position. 2) Bulk density increases significantly with soil depth. 3) Tree height, DBH, and total biomass decrease with bulk density. 4) Foliage, branch, bolewood, bolebark, and root also significantly have a negative correlation with hulk density. 5) Populus alba ${\times}$ P. glandulosa has a shallow root system chiefly distributing only in AI horizon, and critical bulk density is $1.43g/cm^3$. Therefore, slope position, hulk density, and porosity are considered to influence on the growth, biomass, and root development of Populus alba ${\times}$ P. glandulosa.

  • PDF

Electrical surveys at the Okmyung waste landfill of Pohang (포항 옥명 폐기물 매립장에서의 전기탐사)

  • Lee, Gi Hwa;Yun, Jong Ryeol
    • Journal of the Korean Geophysical Society
    • /
    • v.1 no.1
    • /
    • pp.41-50
    • /
    • 1998
  • Schlumberger soundings, dipole-dipole survey and electrical conductivity mappings were carried out inside and in front of the entrance of the Okmyung waste landfill in August, 1997 and January, 1998. Inside and in front of the landfill, 11 and 4 electrical soundings and 1 dipole-dipole survey were carried out, respectively. Electrical conductivities were measured at 164 points along the 4 lines in front of the entrance of the landfill. Interpretations of survey data show that low resistivity zones of 0.3∼3 Ωm extend down to 65 m depth from the surface in the 6th landfill, which indicates subsurface contamination by leachate and leachate level at 3∼6 m depth from the surface. In the 9th landfill, low resistivity zones below 2 Ωm appear at 11∼15 m depth from the surface, which indicates a very slim chance of subsurface contamination. On the other hand, electrical surveys and electrical conductivity mappings reveal low resistivities at shallow depths in front of the entrance of the landfill, indicating a high possibility of contamination of weathered zone in this area. It appears that southern part of this area close to the 6th landfill is more contaminated by leachate.

  • PDF

Models of Wastewater Treatment by Rotating Discs (회전원판접촉법(回轉圓板接觸法)에 의한 폐수처리(廢水處理)의 모형(模型)에 관한 연구(研究))

  • Chung, Tai Hak;Park, Chung Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.39-46
    • /
    • 1982
  • A model of substrate removal by rotating discs has been developed for a better understanding of the process, and the performance of the system has been evaluated under steady and unsteady state. The model was constructed based upon mass transfer of the substrate from the bulk solution to the biofilm and a simultaneous removal of the substrate by the biomass. The model is composed of a few sets of differential equations representing mass balance within the elements of a liquid film and a biofilm, and in the bulk solution. Substrate removal efficiency of the process is largely dependent on a diffusion coefficient of the substrate within the biofilm and a maximum rate of substrate removal of the biomass. The efficiency is affected to a greater extent when the substrate concentration is low and the maximum substrate removal rate is high. The efficiency increases proportionally with increasing film depth when the biofilm is shallow, however, the rate of increase gradually decreases with an increase of the film depth. As the film reaches a limiting depth, the efficiency remains constant. Unlike the steady state, the effluent quality is affected by the tank volume under dynamic state. Increasing tank volume decreases peak concentration of the effluent under peak loading. Additional tank volume provides a buffer capacitya.gainst a peak loading and the holding tank behaves like an equalization tank.

  • PDF

Significance of Estuarine Mixing in Distribution of Bacterial Abundance and Production in the Estuarine System of the Mankyung river and Dongjin River, Korea (만경강 및 동진강 하구의 박테리아 개체수와 생산량 분포에 있어서의 하구 혼합 (estuarine mixing)의 중요성)

  • CHO, BYUNG CHEOL;SHIM, JAE HYUNG
    • 한국해양학회지
    • /
    • v.27 no.2
    • /
    • pp.154-163
    • /
    • 1992
  • Bacterial abundance, production, and environmental parameters were investigated three times to study distribution of bacterial variables and to examine how estuarine mixing would influence the distribution of bacterial variables in the euphotic zone of the estuarine system of the Mankyung river and Dongjin river during a period of October, 1990-August, 1991. Although a limited number of investigations were made, bacterial abundance and production showed large variations from 0.4 to 5.8${\times}$10/SUP 9/ 1/SUP -1/ and from 0.1 to 22.2 ug C 1/SUP -1/ d/SUP -1/, respectively. The wide ranges of bacterial variables indicated very dynamic changes in conditions of bacterial growth in the estuary. Interestingly, bacterial abundance substantially increased with depth in most stations f shallow depth. but bacterial production remarkably decreased with depth. We propose that the observed distribution of bacterial abundance and production would be explained by estuarine mixing in the estuary. Analyses of mixing diagrams showed that estuarine mixing would mix conservatively bacteria and bacterial production. Further, estuarine mixing often seemed to cause an increase in bacterial abundance and reduction of bacterial production presumably due to resuspension of sediment. This suggests that roles of estuarine mixing would be significant in the distribution of bacterial abundance and production, and thus in biogeochemical cycles in the estuary.

  • PDF

Pull-out Capacity of Cast-in-place Anchor for Construction of Precast Concrete Segment Arch (프리캐스트 콘크리트 패널 분절 아치 시공을 위한 선설치 앵커의 인발 강도 평가)

  • Ahn, Jin-Hee;Yim, Hong Jae;Bang, Jin Soo;Jeon, Seok Hyeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.94-102
    • /
    • 2020
  • Precast concrete segment arch system has an economic and construct ability that combined with advantage of precast concrete and arch behavior. A precast concrete segment arch system with outrigger is consisted of segmented precast panels, a steel outrigger rib, and V-strip to connect precast panels with a steel outrigger rib and cast-in-place anchors in precast panels to connect V-strip should have sufficient pull-out capacity to form its arch shape by site lifting for assembled precast panels and outriggers. However, it is difficult to secure its embedment depth due to the relatively shallow thickness of precast panel. It can be also occurred that flexure deformation of precast panels caused by its pull-out behaviors. In this study, pull-out capacity of cast-in-place anchor was examined for construction of precast concrete segment arch system with outriggers. Therefore, a total of 24 precast panel specimens were fabricated to examine pull-out capacities of cast-in-place anchor in precast panels, and installation depth of anchors, diameter of anchors and wire mesh effects for the precast panel were examined. From this pull-out tests, its pull-out capacities and failure modes were evaluated and the type of the cast-in-place anchor applicable to the precast concrete segment panel arch system with outriggers was determined from comparison of the design specification values.

AN ECOLOGICAL STUDY OF TUNA LONG LINE CATCH DISTRIBUTION OBTAINED BY EXPERIMENTAL FISHING OPERATIONS (다랑어연승 실험조업의 조획물조성에 의한 어업생태학적연구)

  • PARK Sing Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.2 no.2
    • /
    • pp.161-172
    • /
    • 1969
  • Ten experimental tuna long line fishing operations were performed with the long lines A and B, in combination casting orders of BA and AB. The long line B differs from A in its additional main line length per basket and its greater depth of submersion (Table 1). The BA casting order results in an AB hauling order, so that the long line B is casted at an earlier time of a day and fishes for a longer period than A line (fig. 2). The number of fish caught was divided into subclasses in order to be subjected to $x^2-tests$ (Table 2). The first series of $x^2-tests$ were calculated using the hooking rates of two subclasses with other factors pooled (Table 3). The second series of $x^2-tests$ were calculated to obtain the interactions between two subclasses when other factors differed (Table 4). Attention was paid to the extremely small interactions as well as to the large interactions in order to find out whether a factor functions in the same way or in a contradictory way when the other factors involved differ. The test result is summarized in Table 5. The relationship between the hook casting time (relative to the sunrise time) and the hooking rates reveals the feeding behavior of particular species (fig. 3) A high hooking rate for yellowfin tuna shown in the period from one hour before sunrise to the moment of sunrise suggests that they feed actively in that period. Their poor hooking rate on earlier casted hooks suggests that they do not feed well under conditions of darkness and that they feed best while the hooks are sinking. Furthermore it is likely that yellowfin tuna maintain a shallow depth in the daytime, for the $x^2$ interaction between the line casting order BA and AB shows their persistant preferance of the long line A regardless of line casting order. Bigeye tuna show their feeding behavior under conditions of darkness, and show a preference for the sea's deeper layer. Alepisaurus borealis (Gill) show their feeding behavior under conditions of darkness more significantly than the bigeye tuna and their preferance for deep layers is also more significant. Marlins (mainly Makaria mazara) show a feeding behavior which is similar to the yellowfin tuna. The author emphasizes that certain variations of the hooking rates in relation to the line easting time were caused by an inadequate fishing depth as well as by the fish preference for a particular feeding time. When the part of the line casted in pre-dawn hours and hauled in the pre-sunset hours show a significantly lower hooking rate than other parts of the line, then it is concluded that tile hooks settled in a sea layer too deep for feeding.

  • PDF

Geostatistical Interpretation of Sparsely Obtained Seismic Data Combined with Satellite Gravity Data (탄성파 자료의 해양분지 구조 해석 결과 향상을 위한 인공위성 중력자료의 지구통계학적 해석)

  • Park, Gye-Soon;Oh, Seok-Hoon;Lee, Heui-Soon;Kwon, Byung-Doo;Yoo, Hai-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.252-258
    • /
    • 2007
  • We have studied the feasibility of geostatistics approach to enhancing analysis of sparsely obtained seismic data by combining with satellite gravity data. The shallow depth and numerous fishing nets in The Yellow Sea, west of Korea, makes it difficult to do seismic surveys in this area. Therefore, we have attempted to use geostatistics to integrate the seismic data along with gravity data. To evaluate the feasibility of this approach, we have extracted only a few seismic profile data from previous surveys in the Yellow Sea and performed integrated analysis combining with the results from gravity data under the assumption that seismic velocity and density have a high physical correlation. First, we analyzed the correlation between extracted seismic profiles and depths obtained from gravity inversion. Next, we transferred the gravity depth to travel time using non-linear indicator transform and analyze residual values by kriging with varying local means. Finally, the reconstructed time structure map was compared with the original seismic section given in the previous study. Our geostatistical approach demonstrates relatively satisfactory results and especially, in the boundary area where seismic lines are sparse, gives us more in-depth information than previously available.

Estimation of Volume-Area-Depth Relationship for Shallow Wetland (습지의 체적-면적-깊이에 대한 관계식 추정)

  • Kim, Jun-Gwon;Kim, Hyeong-Su;Jeong, Sang-Man
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.231-240
    • /
    • 2002
  • The wetland has very important functions in hydrologic and ecological aspects and the research of wetland functions requires the basic hydrological properties such as water quantity. However, we do not have a research work on the hydrological properties for a wetland study in Korea. Therefore, this study is to estimate the relations between the volume(V), the area(A), and the depth(h) of water in the wetland which might be the basis for the wetland research in Korea. To estimate the relations, we derive the basic equations, obtain the surveyed data and do modelling, and estimate the relations of A-h and V-h using the Surfer program. The estimated and observed volumes for 5-wetland are compared and the errors are in the range of 2 % to 11 % for 4-wetland and 34 % for the rest. The wetlands in small errors showed the similar ones with the profile of the wetted perimeter which is assumed for the derivation of the equation but the wetland of large error has much different profile with the assumed one. We re-estimate the volumes for 3-wetland(W3, W4, W5) which showed the large errors due to the bended profiles of the wetland slopes. say, after the slopes was divided into two parts of upper and lower ones, the volumes were estimated. From our re-estimation, we obtained very good results ranged from 1 % to 8 % in their errors. We conjecture that the procedure suggested in this study might be useful as a reference for the future research on the relations of V-A-h in Korea.

Modelling Analysis of Climate and Soil Depth Effects on Pine Tree Dieback in Korea Using BIOME-BGC (BIOME-BGC 모형을 이용한 국내 소나무 고사의 기후 및 토심 영향 분석)

  • Kang, Sinkyu;Lim, Jong-Hwan;Kim, Eun-Sook;Cho, Nanghyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.242-252
    • /
    • 2016
  • A process-based ecosystem model, BIOME-BGC, was applied to simulate seasonal and inter-annual dynamics of carbon and water processes for potential evergreen needleleaf forest (ENF) biome in Korea. Two simulation sites, Milyang and Unljin, were selected to reflect warm-and-dry and cool-and-wet climate regimes, where massive diebacks of pines including Pinus densiflora, P. koraiensis and P thunbergii, were observed in 2009 and 2014, respectively. Standard Precipitation Index (SPI) showed periodic drought occurrence at every 5 years or so for both sites. Since mid-2000s, droughts occurred with hotter climate condition. Among many model variables, Cpool (i.e., a temporary carbon pool reserving photosynthetic compounds before allocations for new tissue production) was identified as a useful proxy variable of tree carbon starvation caused by reduction of gross primary production (GPP) and/or increase of maintenance respiration (Rm). Temporal Cpool variation agreed well with timings of pine tree diebacks for both sites. Though water stress was important, winter- and spring-time warmer temperature also played critical roles in reduction of Cpool, especially for the cool-and-wet Uljin. Shallow soil depth intensified the drought effect, which was, however, marginal for soil depth shallower than 0.5 m. Our modeling analysis implicates seasonal drought and warmer climate can intensify vulnerability of ENF dieback in Korea, especially for shallower soils, in which multi-year continued stress is of concern more than short-term episodic stress.