• Title/Summary/Keyword: shallow depth

Search Result 1,034, Processing Time 0.026 seconds

Life history and reproduction of the amphipod Synchelidium trioostegitum (Crustacea, Oedicerotidae) in a temperate sandy shore, southern Korea

  • Hwan, Yu-Ok;Rip, Seo-Hae
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.457-458
    • /
    • 2001
  • Reproductive and life history patterns of marine amphipods are influenced by a variety of biotic and abiotic factors. Those factors may vary on local scales or along geographic patterns and result local or geographic variations in reproduction and life history. Although many studies in life history of amphipods were carried out at various habitats, limited information on the life history and reproduction at a shallow sandy shore 〈 1 m depth is available (Bear and Moore, 1996). (omitted)

  • PDF

A study on applicability of volumetric water content to predict shallow failure (표층붕괴 예측을 위한 체적함수비 적용성 연구)

  • Suk, Jae-Wook;Song, Hyo-Sung;Kang, Hyo-Sub;Kim, Ho-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.737-746
    • /
    • 2019
  • Most landslides in the country are shallow failures triggered by intense rainfall. Many researchers have revealed the possibility of predicting shallow failure through the volumetric water content (VWC). This study examined how to determine shallow failure using the gradient characteristics of the volumetric water content. For this, flume experiments were conducted using weathered granite soil. To confirm the saturation state of the surface layer under a rainfall intensity of 30 and 50mm/hr, VWC sensors were installed at depths of 10 and 20 cm on the upper, middle and lower slope. The test results showed that a shallow failure determination using VWC could be applied limitedly according to the slope degree. In addition, the effective cumulative rainfall due to the rainfall infiltration velocity is considered the main factor for the failure time. The failure prediction using the gradient of the VWC depends on the installation location and depth of the sensor. According to the experimental data, the measured value at 20 cm below the slope was most effective. Therefore, an analysis method of VWC and the method of selecting the installation location confirmed through this study can provide important data for presenting the measurement criteria using VWC in the future.

Reproduction of Shallow Tides and Tidal Asymmetry by Using Finely Resolved Grid on the West Coast of Korea (서해연안 상세해상을 통한 천해조석 및 조석비대칭 재현)

  • Suh, Seung-Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.4
    • /
    • pp.313-325
    • /
    • 2011
  • Finite element grid system using h-refinement on the Yellow Sea was constructed based on previous study (Suh, 1999b) from 14 K to 210 K and special attention was concentrated on refining the coastal zone. In grid generation, depth change between adjacent points and non-dimensional tidal wave length ratio were considered. As a result approximately a quarter of the total nodes are located nearby 5 m of shallow area. Accurate bathymetry data using 30's and ETOPO1 with open boundary conditions of 8 major tidal constituents extracted automatically from FES2004 have been applied. In tidal simulation a 3-dimensional nonlinear harmonic model was setup and tidal amplification due to changes in vertical turbulent and bottom friction were simulated. In this study not only 8 major tidal constituents but also nonlinear shallow tides $M_4,$, $MS_4$ and long period $M_f,$, $M_{sf}$ were reproduced. It is found that implication of spatial variation of friction coefficient plays a very important role in reproduction of astronomical and shallow tides which are computed by iterative computation of nonlinear terms. Also it should be considered differently with respect to tidal periods. To understand the distribution of tidal asymmetry, amplitude ratio of $M_4/M_2$ and phase differences $2g(M_2)-g(M_4)$ were calculated. Tidal distortion ratio marks up to 0.2 on the west coast showing shallow coastal characteristics and somewhat wide range of ebb-dominances in front of Mokpo area are reproduced.

Application of Depth Resolution and Sensitivity Distribution of Electrical Resistivity Tomography to Modeling Weathered Zones and Land Creeping (전기비저항 깊이분해능 및 감도분포: 풍화층 및 땅밀림 모델에 대한 적용)

  • Kim, Jeong-In;Kim, Ji-Soo;Ahn, Young-Don;Kim, Won-Ki
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.157-171
    • /
    • 2022
  • Electrical resistivity tomography (ERT) is a traditional and representative geophysical method for determining the resistivity distributions of surrounding soil and rock volumes. Depth resolution profiles and sensitivity distribution sections of the resistivities with respect to various electrode configurations are calculated and investigated using numerical model data. Shallow vertical resolution decreases in the order of Wenner, Schlumberger, and dipole-dipole arrays. A high investigable depth in homogeneous medium is calculated to be 0.11-0.19 times the active electrode spacing, but is counterbalanced by a low vertical resolution. For the application of ERT depth resolution profiles and sensitivity distributions, we provide subsurface structure models for two types of land-creping failure (planar and curved), subvertical fracture, and weathered layer over felsic and mafic igneous rocks. The dipole-dipole configuration appears to be most effective for mapping land-creeping failure planes (especially for curved planes), whereas the Wenner array gives the best resolution of soil horizons and shallow structures in the weathered zone.

Analysis of Joint Characteristics and Rock Mass Classification using Deep Borehole and Geophysical Logging (심부 시추공 회수코어와 물리검층 자료를 활용한 절리 및 암반등급 평가)

  • Dae-Sung Cheon;Seungbeom Choi;Won-Kyong Song;Seong Kon Lee
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.330-354
    • /
    • 2024
  • In site characterization of high-level radioactive waste, discontinuity(joint) distribution and rock mass classification, which are key evaluation parameters in the rock engineering field, were evaluated using deep boreholes in the Wonju granite and Chuncheon granite, which belong to Mesozoic Jurassic era. To evaluate joint distribution characteristics, fracture zones and joint surfaces extracted from ATV data were used, and major joint sets were evaluated along with joint frequency according to depth, dip direction, and dip. Both the Wonju and Chuncheon granites that were studied showed a tendency for the frequency of joints to increase linearly with depth, and joints with high angles were relatively widely distributed. In addition, relatively large amounts of weathering tended to occur even in deep depth due to groundwater inflow through high-angle joints. RQD values remained consistently low even at considerable depth. Meanwhile, joint groups with low angles showed different joint characteristics from joint sets with high angles. Rock mass classification was performed based on RMR system, and along with rock mass classification for 50 m intervals where uniaxial compressive strength was performed, continuous rock mass classification according to depth was performed using velocity log data and geostatistical techniques. The Wonju granite exhibited a superior rock mass class compared to the Chuncheon granite. In the 50 m interval and continuous rock mass classification, the shallow part of the Wonju granite showed a higher class than the deep part, and the deep part of the Chuncheon granite showed a higher class than the shallow part.

Three-Dimensional Limit Equilibrium Stability Analysis of Spile-Reinforced Shallow Tunnel

    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.101-122
    • /
    • 1997
  • A spiting reinforcement system is composed of a series of radially installed reinforcing spites along the perimeter of the tunnel opening ahead of excavation. The reinforcing spill network is extended into the in-situ soil mass both radially and longitudinally The sailing reinforcement system has been successfully used for the construction of underground openings to reinforce weak rock formations on several occasions. The application of this spiting reinforcement system is currently extended to soft ground tunneling in limited occasions because of lack of reliable analysis and design methods. A method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground is presented. The shape of the potential failure wedge for the case of smile-reinforced shallow tunnel is assumed on the basis of the results of three dimensional finite element analyses. A criterion to differentiate the spill-reinforced shallow tunnel from the smile-reinforced deep tunnel is also formulated, where the tunnel depth, soil type, geometry of the tunnel and reinforcing spites, together with soil arching effects, are considered. To examine the suitability of the proposed method of threedimensional stability analysis in practice, overall stability of the spill-reinforced shallow tunnel at facing is evaluated, and the predicted safety factors are compared with results from twotimensional analyses. Using the proposed method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground, a parametric study is also made to investigate the effects of various design parameters such as tunnel depth, smile length and wadial spill spacing. With slight modifications the analytical method of threeiimensional stability analysis proposed may also be extended for the analysis and design of steel pipe reinforced multi -step grouting technique frequently used as a supplementary reinforcing method in soft ground tunnel construction.

  • PDF

Geochemical Studies of Geothermal Waters in Yusung Geotheraml Area (유성 지역 지열수의 지구화학적 특성 연구)

  • 김건영;고용권;김천수;배대석;박맹언
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.32-46
    • /
    • 2000
  • Hydrogeochemical and isotope ($\delta$$^{18}$ O, $\delta$D, $^3$H, $\delta$$^{13}$ C, $\delta$$^{34}$ S, $^{87}$ Sr/$^{86}$ Sr) studies of various kinds of waters (thermal groundwater, deep groundwater, shallow groundwater, and surface water) from the Yusung area were carried out in order to elucidate their geochemical characteristics such as distribution and behaviour of major/minor elements, geochemical evolution, reservoir temperature, and water-rock interaction of the thermal groundwater. Thermal groundwater of the Yusung area is formed by heating at depth during deep circlulation of groundwater and is evolved into Na-HCO$_3$type water by hydrolysis of silicate minerals with calcite precipitation and mixing of shallow groundwater. High NO$_3$contents of many thermal and deep groundwater samples indicate that the thermal or deep groundwaters were mixed with contaminated shallow groundwater and/or surface water. $\delta$$^{18}$ O and $\delta$D are plotted around the global meteoric water line and there are no differences between the various types of water. Tritium contents of shallow groundwater, deep groundwater and thermal groundwater are quite different, but show that the thermal groundwater was mixed with surface water and/or shallow groundwater during uprising to surface after being heated at depths. $\delta$$^{13}$ C values of all water samples are very low (average -16.3$\textperthousand$%o). Such low $\delta$$^{13}$ C values indicate that the source of carbon is organic material and all waters from the Yusung area were affected by $CO_2$ gas originated from near surface environment. $\delta$$^{34}$ S values show mixing properties of thermal groundwater and shallow groundwater. Based on $^{87}$ Sr/$^{86}$ Sr values, Ca is thought to be originated from the dissolution of plagioclase. Reservoir temperature at depth is estimated to be 100~1$25^{\circ}C$ by calculation of equilibrium method of multiphase system. Therefore, the thermal groundwaters from the Yusung area were formed by heating at depths and evolved by water-rock interaction and mixing with shallow groundwater.

  • PDF

Effects of Dimple Depth and Reynolds Number on the Flow and Heat Transfer in a Dimpled Channel (딤플이 설치된 채널에서 레이놀즈 수 및 딤플 깊이에 따른 유동 및 열전달 특성)

  • Ahn, Joon;Lee, Young-Ok;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3253-3258
    • /
    • 2007
  • A large eddy simulation (LES) has been conducted for the flow and heat transfer in a dimpled channel. Two dimple depths of 0.2 and 0.3 times of the dimple print diameter (= D) have been compared at the bulk Reynolds number of 20,000. Three Reynolds numbers of 5,000, 10,000 and 20,000 have been studied, while the dimple depth is kept as 0.2 D. With the deeper dimple, the flow reattachment occurs father downstream inside the dimple, so that the heat transfer is not as effectively enhanced as the case with shallow ones. At the low Reynolds number of 5,000, the Nusselt number ratio is as high as those for the higher Reynolds number, although the value of heat transfer coefficient decreases because of the weak shear layer vortices.

  • PDF

Motion of a Cylindrical Object due to Seabed Soil Friction (해저면 토양마찰력에 의한 원통형 물체의 운동)

  • 최경식;강신영;곽한우
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.19-28
    • /
    • 1992
  • The motion of a cylindrical object resting on shallow seabed due to wave forces and soil friction is studied. Given environmental conditions such as wave characteristics and seabed soil properties, the equations of motion are derived and the corresponding reponses of the cylinder in two dimensional plane, i.e., translational and rotational displacements, accelerations, are calculated. The motion is substantially restrained by the penetration of a cylinder into seabed and the parametric study focuses on finding out a minimum penetration depth which makes the cylinder motionless.

  • PDF

Hydrodynamic Forces Characteristics of a Circular Cylinder with a Damping Plate (감쇠판이 부착된 원기둥의 동유체력 특성)

  • Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The radiation of water waves by a heaving truncated circular cylinder with damping plate is solved in the frame of the three-dimensional linear potential theory. The damping plate has a distinct advantage in reducing the motion response of a floating circular cylinder by increasing the added mass and the damping coefficient. Using the matched eigenfunction expansion method, the characteristics of hydrodynamic added mass and the damping coefficient are investigated with various system parameters, such as the radius and submergence depth of the damping plate. It is found that both added mass and the damping coefficient are significantly increased due to the arranged features of the larger damping plate with shallow submergence, which are positive factors as a motion reduction device of the floating offshore platform. Also the numerical results for an oscillating submerged disk show that the added mass is negative and that the damping coefficient has a peak value at resonant frequency when submergence depth is sufficiently small.